- Gold nanoparticles modified graphene platforms for highly sensitive electrochemical detection of vitamin C in infant food and formulae.
Gold nanoparticles modified graphene platforms for highly sensitive electrochemical detection of vitamin C in infant food and formulae.
An easy and reliable method based on a novel electroanalytical nanostructured sensor has been developed to perform quantification of vitamin C in commercial and fortified cow-milk-based formulae and foods for infants and young children. The work is motivated by the need of a reliable analytical tool to be applied in quality control laboratories for the quantitative assessment of vitamin C where its rapid and cost-effective monitoring is essential. The ad hoc designed sensor, based on disposable screen-printed carbon electrodes modified with Au nanoparticles decorated reduced graphene oxide flakes, exhibits a LOD of 0.088 mg L-1. The low cost, easy sample preparation, fast response and high reproducibility (RSD ≈ 8%) of the proposed method highlight its suitability for usage in quality control laboratories for determining vitamin C in real complex food matrices, envisaging the application of the sensing platform in the determination of other compounds relevant in food chemistry and food manufacturing.