Skip to Content
MilliporeSigma
  • THAP9 Transposase Cleaves DNA via Conserved Acidic Residues in an RNaseH-Like Domain.

THAP9 Transposase Cleaves DNA via Conserved Acidic Residues in an RNaseH-Like Domain.

Cells (2021-06-03)
Vasudha Sharma, Prachi Thakore, Sharmistha Majumdar
ABSTRACT

The catalytic domain of most 'cut and paste' DNA transposases have the canonical RNase-H fold, which is also shared by other polynucleotidyl transferases such as the retroviral integrases and the RAG1 subunit of V(D)J recombinase. The RNase-H fold is a mixture of beta sheets and alpha helices with three acidic residues (Asp, Asp, Glu/Asp-DDE/D) that are involved in the metal-mediated cleavage and subsequent integration of DNA. Human THAP9 (hTHAP9), homologous to the well-studied Drosophila P-element transposase (DmTNP), is an active DNA transposase that, although domesticated, still retains the catalytic activity to mobilize transposons. In this study we have modeled the structure of hTHAP9 using the recently available cryo-EM structure of DmTNP as a template to identify an RNase-H like fold along with important acidic residues in its catalytic domain. Site-directed mutagenesis of the predicted catalytic residues followed by screening for DNA excision and integration activity has led to the identification of candidate Ds and Es in the RNaseH fold that may be a part of the catalytic triad in hTHAP9. This study has helped widen our knowledge about the catalytic activity of a functionally uncharacterized transposon-derived gene in the human genome.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
ANTI-HA TAG antibody produced in rabbit, IgG fraction of antiserum, buffered aqueous solution
Sigma-Aldrich
Kanamycin sulfate from Streptomyces kanamyceticus, powder, BioReagent, suitable for cell culture, suitable for plant cell culture