Skip to Content
MilliporeSigma
  • Metabolic Imaging Detects Resistance to PI3Kα Inhibition Mediated by Persistent FOXM1 Expression in ER+ Breast Cancer.

Metabolic Imaging Detects Resistance to PI3Kα Inhibition Mediated by Persistent FOXM1 Expression in ER+ Breast Cancer.

Cancer cell (2020-09-26)
Susana Ros, Alan J Wright, Paula D'Santos, De-En Hu, Richard L Hesketh, Yaniv Lubling, Dimitra Georgopoulou, Giulia Lerda, Dominique-Laurent Couturier, Pedram Razavi, Rapahel Pelossof, Ankita S Batra, Elizabeth Mannion, David Y Lewis, Alistair Martin, Richard D Baird, Mafalda Oliveira, Leonora W de Boo, Sabine C Linn, Maurizio Scaltriti, Oscar M Rueda, Alejandra Bruna, Carlos Caldas, Kevin M Brindle
ABSTRACT

PIK3CA, encoding the PI3Kα isoform, is the most frequently mutated oncogene in estrogen receptor (ER)-positive breast cancer. Isoform-selective PI3K inhibitors are used clinically but intrinsic and acquired resistance limits their utility. Improved selection of patients that will benefit from these drugs requires predictive biomarkers. We show here that persistent FOXM1 expression following drug treatment is a biomarker of resistance to PI3Kα inhibition in ER+ breast cancer. FOXM1 drives expression of lactate dehydrogenase (LDH) but not hexokinase 2 (HK-II). The downstream metabolic changes can therefore be detected using MRI of LDH-catalyzed hyperpolarized 13C label exchange between pyruvate and lactate but not by positron emission tomography measurements of HK-II-mediated trapping of the glucose analog 2-deoxy-2-[18F]fluorodeoxyglucose. Rapid assessment of treatment response in breast cancer using this imaging method could help identify patients that benefit from PI3Kα inhibition and design drug combinations to counteract the emergence of resistance.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-SLC16A3 antibody produced in rabbit, Prestige Antibodies® Powered by Atlas Antibodies, affinity isolated antibody, buffered aqueous glycerol solution
Sigma-Aldrich
FDI-6, ≥98% (HPLC)