Skip to Content
MilliporeSigma
  • Neuroprotection induced by dexpramipexole delays disease progression in a mouse model of progressive multiple sclerosis.

Neuroprotection induced by dexpramipexole delays disease progression in a mouse model of progressive multiple sclerosis.

British journal of pharmacology (2020-03-22)
Daniela Buonvicino, Giuseppe Ranieri, Sara Pratesi, Elisabetta Gerace, Mirko Muzzi, Daniele Guasti, Lorenzo Tofani, Alberto Chiarugi
ABSTRACT

Drugs able to counteract progressive multiple sclerosis (MS) represent a largely unmet therapeutic need. Even though the pathogenesis of disease evolution is still obscure, accumulating evidence indicates that mitochondrial dysfunction plays a causative role in neurodegeneration and axonopathy in progressive MS patients. Here, we investigated the effects of dexpramipexole, a compound with a good safety profile in humans and able to sustain mitochondria functioning and energy production, in a mouse model of progressive MS. Female non-obese diabetic mice were immunized with MOG35-55 . Functional, immune and neuropathological parameters were analysed during disease evolution in animals treated or not with dexpramipexole. The compound's effects on bioenergetics and neuroprotection were also evaluated in vitro. We found that oral treatment with dexpramipexole at a dose consistent with that well tolerated in humans delayed disability progression, extended survival, counteracted reduction of spinal cord mitochondrial DNA content and reduced spinal cord axonal loss of mice. Accordingly, the drug sustained in vitro bioenergetics of mouse optic nerve and dorsal root ganglia and counteracted neurodegeneration of organotypic mouse cortical cultures exposed to the adenosine triphosphate-depleting agents oligomycin or veratridine. Dexpramipexole, however, was unable to affect the adaptive and innate immune responses both in vivo and in vitro. The present findings corroborate the hypothesis that neuroprotective agents may be of relevance to counteract MS progression and disclose the translational potential of dexpramipexole to treatment of progressive MS patients as a stand-alone or adjunctive therapy.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Triton X-100, laboratory grade
Millipore
Millicell® Standing Cell Culture Inserts, pore size 0.4 μm, diam. 30 mm, transparent PTFE membrane, hydrophilic, H 13 mm, size 6 wells, sterile