Skip to Content
MilliporeSigma
  • Integration of Subretinal Suspension Transplants of Human Embryonic Stem Cell-Derived Retinal Pigment Epithelial Cells in a Large-Eyed Model of Geographic Atrophy.

Integration of Subretinal Suspension Transplants of Human Embryonic Stem Cell-Derived Retinal Pigment Epithelial Cells in a Large-Eyed Model of Geographic Atrophy.

Investigative ophthalmology & visual science (2017-02-28)
Sandra Petrus-Reurer, Hammurabi Bartuma, Monica Aronsson, Sofie Westman, Fredrik Lanner, Helder André, Anders Kvanta
ABSTRACT

Subretinal suspension transplants of human embryonic stem cell-derived retinal pigment epithelial cells (hESC-RPE) have the capacity to form functional monolayers in naive eyes. We explore hESC-RPE integration when transplanted in suspension to a large-eyed model of geographic atrophy (GA). Derivation of hESC-RPE was performed in a xeno-free and defined manner. Subretinal bleb injection of PBS or sodium iodate (NaIO3) was used to induce a GA-like phenotype. Suspensions of hESC-RPE were transplanted to the subretinal space of naive or PBS-/NaIO3-treated rabbits using a transvitreal pars plana technique. Integration of hESC-RPE was monitored by multimodal real-time imaging and by immunohistochemistry. Subretinal blebs of PBS or NaIO3 caused different degrees of outer neuroretinal degeneration, RPE hyperautofluorescence, focal RPE loss, and choroidal atrophy; that is, hallmark characteristics of GA. In nonpretreated naive eyes, hESC-RPE integrated as subretinal monolayers with preserved overlying photoreceptors, yet not in areas with outer neuroretinal degeneration and native RPE loss. When transplanted to eyes with PBS-/NaIO3-induced degeneration, hESC-RPE failed to integrate. In a large-eyed preclinical model, subretinal suspension transplants of hESC-RPE did not integrate in areas with GA-like degeneration.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-Retinal Pigment Epithelium 65 Antibody, clone 401.8B11.3D9, Chemicon®, from mouse