Skip to Content
MilliporeSigma
  • Identifying Lysophosphatidic Acid Acyltransferase β (LPAAT-β) as the Target of a Nanomolar Angiogenesis Inhibitor from a Phenotypic Screen Using the Polypharmacology Browser PPB2.

Identifying Lysophosphatidic Acid Acyltransferase β (LPAAT-β) as the Target of a Nanomolar Angiogenesis Inhibitor from a Phenotypic Screen Using the Polypharmacology Browser PPB2.

ChemMedChem (2018-12-07)
Marion Poirier, Mahendra Awale, Matthias A Roelli, Guy T Giuffredi, Lars Ruddigkeit, Lasse Evensen, Amandine Stooss, Serafina Calarco, James B Lorens, Roch-Philippe Charles, Jean-Louis Reymond
ABSTRACT

By screening a focused library of kinase inhibitor analogues in a phenotypic co-culture assay for angiogenesis inhibition, we identified an aminotriazine that acts as a cytostatic nanomolar inhibitor. However, this aminotriazine was found to be completely inactive in a whole-kinome profiling assay. To decipher its mechanism of action, we used the online target prediction tool PPB2 (http://ppb2.gdb.tools), which suggested lysophosphatidic acid acyltransferase β (LPAAT-β) as a possible target for this aminotriazine as well as several analogues identified by structure-activity relationship profiling. LPAAT-β inhibition (IC50 ≈15 nm) was confirmed in a biochemical assay and by its effects on cell proliferation in comparison with a known LPAAT-β inhibitor. These experiments illustrate the value of target-prediction tools to guide target identification for phenotypic screening hits and significantly expand the rather limited pharmacology of LPAAT-β inhibitors.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Monoclonal Anti-β-Actin antibody produced in mouse, clone AC-74, ascites fluid
Sigma-Aldrich
Ribonuclease A from bovine pancreas, (Solution of 50% glycerol, 10mM Tris-HCL pH 8.0)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, ACS reagent, 99.4-100.6%, powder