Skip to Content
MilliporeSigma
  • Light-harvesting metal-organic framework nanoprobes for ratiometric fluorescence energy transfer-based determination of pH values and temperature.

Light-harvesting metal-organic framework nanoprobes for ratiometric fluorescence energy transfer-based determination of pH values and temperature.

Mikrochimica acta (2019-06-30)
Zhaoyang Ding, Chunfei Wang, Shichao Wang, Li Wu, Xuanjun Zhang
ABSTRACT

Light-harvesting nanoprobes were developed by self-assembly of nanoscale metal-organic frameworks (NMOFs) and stimuli-responsive polymers for fluorometric sensing of pH values and temperature. Two kinds of fluorescent NMOFs (acting as the energy donor) and stimuli-responsive polymers conjugated to fluorophores (acting as energy acceptors) were prepared and characterized. The NMOFs include zirconium(IV) and π-conjugated dicarboxylate ligands. The fluorophores inclued cyaine dyes and a Bodipy dye. The energy donor and energy acceptor form a Förster resonance energy transfer (FRET) nanosystem. In the light-harvesting system, the chain lengths of the stimuli-responsive polymers vary when the local pH value or temperature change. Ratiometric sensing of pH and temperature was accomplished by monitoring fluorescence. pH values were can be sensed between 3.0 and 8.0 under 420 nm excitation and by ratioing the emission peaks at 645 and 530 nm. Temperature can be sensed in the range from 25 to 50 °C under 550 nm excitation and by ratioing the emission peaks at 810 and 695 nm. The nanoprobes display excellent water dispersibility and cell membrane permeability. They were applied to image pH values and temperature in HeLa cells. Graphical abstract Schematic presentation of an effective strategy to fabricate light-harvesting nanoprobes by self-assembly of MOFs and stimuli-responsive polymers for ratiometric pH and temperature sensing. The distance as the polymer length between energy donor and acceptor is crucial for energy transfer efficiency.