Skip to Content
MilliporeSigma
  • Lipid profile changes in erythrocyte membranes of women with diagnosed GDM.

Lipid profile changes in erythrocyte membranes of women with diagnosed GDM.

PloS one (2018-09-15)
Malgorzata Bukowiecka-Matusiak, Izabela Burzynska-Pedziwiatr, Anna Sansone, Beata Malachowska, Monika Zurawska-Klis, Carla Ferreri, Chryssostomos Chatgilialoglu, Tomasz Ochedalski, Katarzyna Cypryk, Lucyna Alicja Wozniak
ABSTRACT

Gestational diabetes mellitus (GDM) is a glucose intolerance that begins or is first recognized during pregnancy. It is currently a growing health problem worldwide affecting from 1% to 14% of all pregnant women depending on racial and ethnic group as well as the diagnostic and screening criteria. Our preliminary study aimed at investigating the erythrocyte membrane fatty acid profiles of pregnant women, in particular with diagnosed with gestational diabetes mellitus (GDM), and with normal glucose tolerant (NGT) pregnant women as a control group. The study group comprised 43 pregnant women, 32 of whom were diagnosed with GDM according to the WHO criteria, and 11 with normal glucose tolerance. The erythrocyte membrane phospholipids were obtained according to the Folch extraction procedure. Fatty acids (FA) were analyzed by gas chromatography (GC) as the corresponding fatty acid methyl esters (FAME). A cluster of 14 fatty acids identified contained >98% of the recognized peaks in the GC analysis. The analysis of fatty acids from erythrocytes revealed important differences between GDM and NGT women in the third trimester, and the results were correlated with biochemical data. Among the 14 measured FA representing the membrane lipidomic profile, the levels of three saturated FA (myristic, palmitic, stearic acids) tended to decrease in GDM patients, with the percentage content of stearic acid significantly changed. The relative content of monounsaturated fatty acids (MUFA) tended to increase, in particular the oleic acid and vaccenic acid contents were significantly increased in erythrocyte membranes of the GDM group in comparison with the NGT group. The GDM group demonstrated higher sapienic acid levels (+29%) but this change was not statistically significant. This study revealed association between an impaired cis-vaccenic acid concentration in erythrocytes membrane and GDM development. No significant changes of polyunsaturated fatty acids (PUFA) were observed in GDM and NGT erythrocytes. We postulate, basing on the differences between the GDM and NGT lipidomic profiles, that stearic and cis-vaccenic acids can be considered as dual biomarkers of specific SFA-MUFA conversion pathway, involving the coupling of delta-9 desaturase and elongase enzymes. Our results indicate that the SFA-MUFA families may be involved in the pathophysiology of metabolic diseases such as GDM, but the further studies are needed to confirm our hypothesis. In conclusion, the erythrocyte membranes of GDM women undergo remodeling resulting in abnormal fatty acid profiles, which are reflection of the long-term status of organism and can have great impact on both the mother and her offspring.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
cis-Vaccenic acid, ≥97% (capillary GC), oil