Skip to Content
MilliporeSigma
  • Luminal alkalinization attenuates proteinuria-induced oxidative damage in proximal tubular cells.

Luminal alkalinization attenuates proteinuria-induced oxidative damage in proximal tubular cells.

Journal of the American Society of Nephrology : JASN (2011-03-05)
Tomokazu Souma, Michiaki Abe, Takashi Moriguchi, Jun Takai, Noriko Yanagisawa-Miyazawa, Eisuke Shibata, Yasutoshi Akiyama, Takafumi Toyohara, Takehiro Suzuki, Masayuki Tanemoto, Takaaki Abe, Hiroshi Sato, Masayuki Yamamoto, Sadayoshi Ito
ABSTRACT

A highly acidic environment surrounds proximal tubular cells as a result of their reabsorption of HCO(3)(-). It is unclear whether this luminal acidity affects proteinuria-induced progression of tubular cell damage. Here, we investigated the contribution of luminal acidity to superoxide (O(2)(·-)) production induced by oleic acid-bound albumin (OA-Alb) in proximal tubular cells. Acidic media significantly enhanced OA-Alb-induced O(2)(·-) production in the HK-2 proximal tubular cell line. Simultaneous treatment with both OA-Alb and acidic media led to phosphorylation of the intracellular pH sensor Pyk2. Highly phosphorylated Pyk2 associated with activation of Rac1, an essential subcomponent of NAD(P)H oxidase. Furthermore, knockdown of Pyk2 with siRNA attenuated the O(2)(·-) production induced by cotreatment with OA-Alb and acid. To assess whether luminal alkalinization abrogates proteinuria-induced tubular damage, we studied a mouse model of protein-overload nephropathy. NaHCO(3) feeding selectively alkalinized the urine and dramatically attenuated the accumulation of O(2)(·-)-induced DNA damage and proximal tubular injury. Overall, these observations suggest that luminal acidity aggravates proteinuria-induced tubular damage and that modulation of this acidic environment may hold potential as a therapeutic target for proteinuric kidney disease.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Menadione sodium bisulfite, BioReagent, suitable for cell culture, ≥95% (TLC)