Skip to Content
MilliporeSigma
All Photos(1)

Documents

207934

Sigma-Aldrich

Tetrafluoroboric acid solution

48 wt. % in H2O

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
HBF4
CAS Number:
Molecular Weight:
87.81
MDL number:
UNSPSC Code:
12352106
PubChem Substance ID:
NACRES:
NA.21

vapor density

3 (vs air)

vapor pressure

5 mmHg ( 20 °C)

form

liquid

concentration

46.0-52.0% in NaOH (titration)
48 wt. % in H2O

density

1.4 g/mL at 25 °C

SMILES string

F.FB(F)F

InChI

1S/BF3.FH/c2-1(3)4;/h;1H

InChI key

LEMQFBIYMVUIIG-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

Tetrafluoroboric acid is used as a catalyst for the protection and deprotection reactions of various carbohydrates. It participates in the synthesis of 4-sulfonic acid phenyl diazonium tetrafluoroborate, which was required for the preparation of sulfonated graphene (SG).

Application

Tetrafluoroboric acid solution may be used as a catalyst for the hydration of aromatic haloalkynes to α-halomethyl ketones in the absence of metal catalysts. It may also be used the epoxidized soybean oil (ESBO) ring opening step of fatty acids preparation.

pictograms

Corrosion

signalword

Danger

hcodes

Hazard Classifications

Eye Dam. 1 - Skin Corr. 1B

Storage Class

8B - Non-combustible corrosive hazardous materials

wgk_germany

WGK 1

flash_point_f

Not applicable

flash_point_c

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Self-assembling sulfonated graphene/polyaniline nanocomposite paper for high performance supercapacitor.
Fan T, et al.
Synthetic Metals, 199, 79-86 (2015)
Metal-free hydration of aromatic haloalkynes to a-halomethyl ketones.
Ye M, et al.
Tetrahedron Letters, 57(45), 4983-4986 (2016)
Richard Ting et al.
Journal of the American Chemical Society, 130(36), 12045-12055 (2008-08-15)
The use of a boronic ester as a captor of aqueous [(18)F]-fluoride has been previously suggested as a means of labeling biomolecules in one step for positron emission tomography (PET) imaging. For this approach to be seriously considered, the [(18)F]-labeled
Arnis Abolins et al.
Materials (Basel, Switzerland), 14(4) (2021-03-07)
A second-generation bio-based feedstock-tall oil fatty acids-was epoxidised via two pathways. Oxirane rings were introduced into the fatty acid carbon backbone using a heterogeneous epoxidation catalyst-ion exchange resin Amberlite IR-120 H or enzyme catalyst Candida antarctica lipase B under the
Ming-Hsi Chiang et al.
Inorganic chemistry, 48(16), 7604-7612 (2009-07-16)
Iron azadithiolate phosphine-substituted complex and its protonated species featuring the NH proton and/or bridging Fe hydride, [Fe(2)(mu-S(CH(2))(2)N(n)Pr(H)(m)(CH(2))(2)S)(mu-H)(n)(CO)(4)(PMe(3))(2)](2)((2m+2n)+) (1, m = n = 0; [1-2H(N)](2+), m = 1, n = 0; [1-2H(N)2H(Fe)](4+), m = n = 1), are prepared to mimic

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service