Skip to Content
MilliporeSigma
All Photos(1)

Key Documents

72262

Sigma-Aldrich

Nickel (IV) oxide

technical, ~30% active peroxide basis

Synonym(s):

Nickel dioxide, Nickel oxide

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
NiO2
CAS Number:
Molecular Weight:
90.69
EC Number:
MDL number:
UNSPSC Code:
12352000
PubChem Substance ID:
NACRES:
NA.22

Quality Level

grade

technical

form

powder

reaction suitability

core: nickel
reagent type: catalyst
reagent type: oxidant

concentration

~30% (active peroxide)

SMILES string

O=[Ni]O[Ni]=O

InChI

1S/2Ni.3O

InChI key

PZFKDUMHDHEBLD-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Application

Catalyst for:
  • One-dimensional oxide-metal hybrid structures and site-specific enhanced reactivity for CO oxidation
  • Microwave induced catalytic degradation of crystal violet

Used to study differences in reactivity trends for carbon monoxide catalyzed oxidation caused by anionic transition metal oxide clusters

Reagent:
  • For solvent-free oxidation of alcohols†
  • For chemoselective oxidation of organic compounds using inductive heating
  • To improve the synthesis of methoxy cephalosporin′s intermediate

Other Notes

Oxidant for the transformation of alcohols into acids and hydrazones into diazoalkanes

signalword

Danger

Hazard Classifications

Aquatic Chronic 4 - Carc. 1A Inhalation - Ox. Sol. 2 - Skin Sens. 1 - STOT RE 1 Inhalation

Storage Class

5.1B - Oxidizing hazardous materials

wgk_germany

WGK 1

flash_point_f

Not applicable

flash_point_c

Not applicable

ppe

Eyeshields, Faceshields, Gloves, type P3 (EN 143) respirator cartridges


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Javier Jiménez-Lamana et al.
Nanomaterials (Basel, Switzerland), 10(5) (2020-05-28)
Although nickel allergy and carcinogenicity are well known, their molecular mechanisms are still uncertain, thus demanding studies at the molecular level. The nickel carcinogenicity is known to be dependent on the chemical form of nickel, since only certain nickel compounds
Robert K DeLong et al.
Nanomaterials (Basel, Switzerland), 9(12) (2019-11-28)
Currently, there is a great interest in nanoparticle-based vaccine delivery. Recent studies suggest that nanoparticles when introduced into the biological milieu are not simply passive carriers but may also contribute immunological activity themselves or of their own accord. For example
Chiara Argentati et al.
Journal of personalized medicine, 10(1) (2020-02-12)
Ex vivo cell/tissue-based models are an essential step in the workflow of pathophysiology studies, assay development, disease modeling, drug discovery, and development of personalized therapeutic strategies. For these purposes, both scientific and pharmaceutical research have adopted ex vivo stem cell
Zachary Daniels et al.
Materials (Basel, Switzerland), 12(18) (2019-09-11)
Described herein is a novel method, Reduction Expansion Synthesis-Sintered Metal (RES-SM), to create a sintered metal body of a designed shape at ambient pressure, hundreds of degrees below the metal melting temperature. The precursor to the metal part is a
Chien-Chen Diao et al.
Nanomaterials (Basel, Switzerland), 10(4) (2020-04-03)
In this study, a p-type 2 at% lithium-doped nickel oxide (abbreviation L2NiO) solution was prepared using Ni(NO3)2·6H2O, and LiNO3·L2NiO thin films were deposited using an atomizer by spraying the L2NiO solution onto a glass substrate. The sprayed specimen was heated

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service