Skip to Content
MilliporeSigma

Preventing Contamination in mAb Process

Preventive inspection of bioreactor

Bioreactors used for monoclonal antibody (mAb) production are at particular risk of contamination from adventitious agents. Contamination events interrupt manufacturing schedules, resulting in lost revenue and potential disruption of drug supply. Traditional measures to prevent upstream contamination focus on careful sourcing and selection of raw materials, comprehensive testing for the presence of viral contaminants, and implementation of technologies that prevent virus from entering production processes.

High-profile viral contamination events have led biomanufacturers to re-examine risk assessments around viral safety. As a result, many biomanufacturers are implementing additional measures upstream of the bioreactor to mitigate the risk of viral contamination.


Related Articles




Workflow

The image depicts a modern laboratory setting with multiple microscopes and computer monitor displays an enlarged, colorful image—likely of a cellular structure.

Detecting Viral Contamination

Testing for the presence of viruses and other adventitious agents in cell banks, raw materials, and process intermediates

Scientist working on a complex machine to remove or inactivate viruses.

Implementation of technologies to remove or inactivate viruses and execute clearance studies that demonstrate process safety.

Three scientists are engaged in a discussion within a laboratory, surrounded by stainless steel equipment.

Monoclonal antibody manufacturing is a highly templated approach used to produce mAb-based immunotherapies. Robust, scalable process solutions are required at every step to ensure high therapeutic concentration and process safety, while meeting speed-to-market and cost containment concerns.


HTST Pasteurized Glucose

Glucose is a critical component of many cell culture media and is generally regarded as a high-risk raw material for viral contamination. This high-risk designation arises from the plant origin source (sugarcane or beet fields), coupled with its innate attractiveness to virus-carrying rodents. High temperature short time (HTST) pasteurization of glucose solutions enables robust clearance of viruses with high physico-chemical resistance. This point-of-origin solution mitigates the risk of viral contamination in high-risk cell culture media components, without compromising cell culture performance.

Virus-Retentive Filters for Cell Culture Media

Filtration is a familiar, easy-to-use technology that can be implemented to reduce the risk of bioreactor contamination. The advantages of virus-retentive filters designed specifically for efficient processing of cell culture media include:

  • Removal of both enveloped and non-enveloped viruses, in addition to bacteria and mycoplasma
  • Improved process economics compared to use of downstream virus filters
  • Maintained cell culture performance

Non-Animal Origin and Chemically Defined Raw Materials

Contamination often originates from raw materials and animal-derived components, such as bovine serum or trypsin. Raw materials and animal-derived components at high risk of virus contamination can be replaced with lower-risk alternatives, such as chemically-defined cell culture media and non-animal origin recombinant supplements.

Genetically Modified Virus-Resistant CHO Cell Lines

The risk of bioreactor contamination with an adventitious virus, such as Minute Virus of Mice (MVM), is a challenge for all biomanufacturers. Chinese Hamster Ovary (CHO) cells that are resistant to MVM infection have been developed and are a powerful tool to prevent bioreactor contamination.





Sign In To Continue

To continue reading please sign in or create an account.

Don't Have An Account?