Skip to Content
Merck
All Photos(1)

Key Documents

88793

Sigma-Aldrich

Atto 532 NHS ester

BioReagent, suitable for fluorescence, ≥90% (HPLC)

Synonym(s):

Atto 532

Sign Into View Organizational & Contract Pricing


About This Item

MDL number:
UNSPSC Code:
12352108
NACRES:
NA.32

product line

BioReagent

Assay

≥90% (HPLC)
≥90% (degree of coupling)

form

powder

manufacturer/tradename

ATTO-TEC GmbH

λ

in methanol: water (1:1) (with 0.1% perchloric acid)

UV absorption

λ: 532-538 nm Amax

suitability

suitable for fluorescence

storage temp.

−20°C

General description

Atto 532 NHS ester is a fluorescent dye related to the well-known laser dye, Rhodamine 6G. The fluorescence activity is excited efficiently at the 515-545nm range. A suitable excitation source for Atto 532 is the 532 nm output of the frequency-doubled Nd: YAG laser.

Application

Atto 532 NHS ester is highly suitable for single-molecule detection applications and high-resolution microscopy such as PALM, dSTORM, and STED. In addition, the dye is used in flow cytometry (FACS) and fluorescence in-situ hybridization (FISH) methods.

Features and Benefits

Characteristic features of the Atto 532 NHS ester are:
  • Strong Absorption.
  • High Fluorescence quantum yield.
  • High Photostability.
  • Excellent water solubility.

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Roland Bienert et al.
Chemphyschem : a European journal of chemical physics and physical chemistry, 12(3), 510-517 (2011-02-03)
H(+)-ATP synthases are molecular machines which couple transmembrane proton transport with ATP synthesis from ADP and inorganic phosphate by a rotational mechanism. Single-pair fluorescence resonance energy transfer (spFRET) in single molecules is a powerful tool to analyse conformational changes. It
Wonchul Shin et al.
Cell, 173(4), 934-945 (2018-04-03)
Fusion is thought to open a pore to release vesicular cargoes vital for many biological processes, including exocytosis, intracellular trafficking, fertilization, and viral entry. However, fusion pores have not been observed and thus proved in live cells. Its regulatory mechanisms and
Rumelo Amor et al.
Scientific reports, 4, 7359-7359 (2014-12-09)
Standing-wave excitation of fluorescence is highly desirable in optical microscopy because it improves the axial resolution. We demonstrate here that multiplanar excitation of fluorescence by a standing wave can be produced in a single-spot laser scanning microscope by placing a
John F Lesoine et al.
Nano letters, 12(6), 3273-3278 (2012-06-06)
We present a method for measuring the fluorescence from a single molecule hundreds of times without surface immobilization. The approach is based on the use of electroosmosis to repeatedly drive a single target molecule in a fused silica nanochannel through
Kiyoto Kamagata et al.
Journal of the American Chemical Society, 134(28), 11525-11532 (2012-06-14)
A method was developed to detect fluorescence intensity signals from single molecules diffusing freely in a capillary cell. A unique optical system based on a spherical mirror was designed to enable quantitative detection of the fluorescence intensity. Furthermore, "flow-and-stop" control

Articles

Chromogenic and fluorogenic derivatives are invaluable tools for biochemistry, having numerous applications in enzymology, protein chemistry, immunology and histochemistry.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service