Skip to Content
Merck
All Photos(4)

Documents

E26258

Sigma-Aldrich

Ethylene carbonate

98%

Synonym(s):

1,3-Dioxolan-2-one

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C3H4O3
CAS Number:
Molecular Weight:
88.06
Beilstein:
106249
EC Number:
MDL number:
UNSPSC Code:
12352100
PubChem Substance ID:
NACRES:
NA.22

vapor density

3.04 (vs air)

vapor pressure

0.02 mmHg ( 36.4 °C)

Assay

98%

bp

243-244 °C/740 mmHg (lit.)

mp

35-38 °C (lit.)

density

1.321 g/mL at 25 °C (lit.)

SMILES string

O=C1OCCO1

InChI

1S/C3H4O3/c4-3-5-1-2-6-3/h1-2H2

InChI key

KMTRUDSVKNLOMY-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Related Categories

Application

Ethylene carbonate has been used:
  • In the synthesis of aliphatic polyurethanes using diamines and diols.
  • As a precursor for ring-opening polymerization using KOH as initiator.
  • As a reactant in the preparation of dimethyl carbonate, glycerol carbonate by transesterification reaction.

related product

Product No.
Description
Pricing

Pictograms

Health hazardExclamation mark

Signal Word

Warning

Hazard Statements

Hazard Classifications

Acute Tox. 4 Oral - Eye Irrit. 2 - STOT RE 2 Oral

Target Organs

Kidney

Storage Class Code

11 - Combustible Solids

WGK

WGK 1

Flash Point(F)

289.4 °F - closed cup

Flash Point(C)

143 °C - closed cup

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Ring-opening polymerization of ethylene carbonate and depolymerization of poly (ethylene oxide-co-ethylene carbonate).
Lee J-C and Litt MH
Macromolecules, 33(5), 1618-1627 (2000)
Kinetics of the production of glycerol carbonate by transesterification of glycerol with dimethyl and ethylene carbonate using potassium methoxide, a highly active catalyst.
Esteban J, et al.
Fuel Processing Technology, 138(5), 243-251 (2015)
Synthesis of dimethyl carbonate from transesterification of ethylene carbonate with methanol using immobilized ionic liquid on commercial silica.
Kim K-H, et al.
Korean Journal of Chemical Engineering, 27(5), 1441-1445 (2010)
Sang-Jae Park et al.
Journal of the American Chemical Society, 137(7), 2565-2571 (2015-02-04)
Here we describe a class of electric-conducting polymers that conduct electrons via the side chain π-π stacking. These polymers can be designed and synthesized with different chemical moieties to perform different functions, extremely suitable as a conductive polymer binder for
Niccolò Peruzzi et al.
The journal of physical chemistry. B, 116(49), 14398-14405 (2012-11-24)
The solubility of some potassium salts (KF, KCl, KBr, KI, KNO(3), KClO(4), KSCN, and KSeCN) in ethylene carbonate (EC) was determined at different temperatures with an inductively coupled plasma atomic emission spectrometer. From the solubility measurements, the thermodynamic parameters ΔG

Articles

Solid-state lithium fast-ion conductors are crucial for safer, high-energy-density all-solid-state batteries, addressing conventional battery limitations.

Solid-state lithium fast-ion conductors are crucial for safer, high-energy-density all-solid-state batteries, addressing conventional battery limitations.

Solid-state lithium fast-ion conductors are crucial for safer, high-energy-density all-solid-state batteries, addressing conventional battery limitations.

Solid-state lithium fast-ion conductors are crucial for safer, high-energy-density all-solid-state batteries, addressing conventional battery limitations.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service