Skip to Content
Merck
All Photos(1)

Key Documents

SHC007

Sigma-Aldrich

MISSION® pLKO.1-puro Luciferase shRNA Control Plasmid DNA

shRNA sequence targeting luciferase

Synonym(s):

MISSION® Control Vectors

Sign Into View Organizational & Contract Pricing


About This Item

MDL number:
UNSPSC Code:
41106609
NACRES:
NA.51

product line

MISSION®

concentration

500 ng/μL in TE buffer; DNA (10μg of plasmid DNA)

shipped in

dry ice

storage temp.

−20°C

Looking for similar products? Visit Product Comparison Guide

General description

The MISSION® Luciferase shRNA Control Vector is a 7,091 base pair lentivirus plasmid vector that contains an shRNA sequence targeting luciferase from Photinus pyralis (GenBank Accession No. M15077). The Luciferase shRNA Control Vector is useful as a positive knockdown control in experiments using cell lines expressing firefly luciferase. It can also be used as a negative control vector.

Ampicillin and puromycin antibiotic resistance genes provide selection in bacterial or mammalian cells respectively. In addition, self-inactivating replication incompetent viral particles can be produced in packaging cells (HEK293T) by co-transfection with compatible packaging plasmids, MISSION® Lentiviral Packaging Mix (Prod. No. SHP001). The Luciferase shRNA Control Vector is provided as 10 μg of plasmid DNA in Tris-EDTA (TE) buffer at a concentration of 500 ng/μl.

Application

To see more application data, protocols, vector maps visit sigma.com/shrna.

Legal Information

Use of this product is subject to one or more license agreements. For details, please see http://sigmaaldrich.com/missionlicense.
MISSION is a registered trademark of Merck KGaA, Darmstadt, Germany

Storage Class Code

10 - Combustible liquids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

The epigenetic regulators CBP and p300 facilitate leukemogenesis and represent therapeutic targets in acute myeloid leukemia.
Giotopoulos G
Oncogene, 35(3), 279-289 (2016)
Ivana Horvathova et al.
Molecular cell, 68(3), 615-625 (2017-10-24)
RNA degradation plays a fundamental role in regulating gene expression. In order to characterize the spatiotemporal dynamics of RNA turnover in single cells, we developed a fluorescent biosensor based on dual-color, single-molecule RNA imaging that allows intact transcripts to be
Signe R Michaelsen et al.
Neuro-oncology, 20(11), 1462-1474 (2018-06-26)
Glioblastoma ranks among the most lethal cancers, with current therapies offering only palliation. Paracrine vascular endothelial growth factor (VEGF) signaling has been targeted using anti-angiogenic agents, whereas autocrine VEGF/VEGF receptor 2 (VEGFR2) signaling is poorly understood. Bevacizumab resistance of VEGFR2-expressing
Vajiheh Neshati et al.
Applied biochemistry and biotechnology, 186(1), 245-255 (2018-03-27)
Since the adult mammalian heart has limited regenerative capacity, cardiac trauma, disease, and aging cause permanent loss of contractile tissue. This has fueled the development of stem cell-based strategies to provide the damaged heart with new cardiomyocytes. Bone marrow-derived mesenchymal
GRHL2-miR-200-ZEB1 maintains the epithelial status of ovarian cancer through transcriptional regulation and histone modification.
Chung VY
Scientific Reports, 6 (2016)

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service