跳轉至內容
Merck

Mechanical regulation of cardiac fibroblast profibrotic phenotypes.

Molecular biology of the cell (2017-05-05)
Kate M Herum, Jonas Choppe, Aditya Kumar, Adam J Engler, Andrew D McCulloch
摘要

Cardiac fibrosis is a serious condition currently lacking effective treatments. It occurs as a result of cardiac fibroblast (CFB) activation and differentiation into myofibroblasts, characterized by proliferation, extracellular matrix (ECM) production and stiffening, and contraction due to the expression of smooth muscle α-actin. The mechanical properties of myocardium change regionally and over time after myocardial infarction (MI). Although mechanical cues are known to activate CFBs, it is unclear which specific mechanical stimuli regulate which specific phenotypic trait; thus we investigated these relationships using three in vitro models of CFB mechanical activation and found that 1) paracrine signaling from stretched cardiomyocytes induces CFB proliferation under mechanical conditions similar to those of the infarct border region; 2) direct stretch of CFBs mimicking the mechanical environment of the infarct region induces a synthetic phenotype with elevated ECM production; and 3) progressive matrix stiffening, modeling the mechanical effects of infarct scar maturation, causes smooth muscle α-actin fiber formation, up-regulation of collagen I, and down-regulation of collagen III. These findings suggest that myocyte stretch, fibroblast stretch, and matrix stiffening following MI may separately regulate different profibrotic traits of activated CFBs.

材料
產品編號
品牌
產品描述

Sigma-Aldrich
层粘连蛋白 来源于 Engelbreth-Holm-Swarm 小鼠肉瘤基底膜, 1-2 mg/mL in Tris-buffered saline, 0.2 μm filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
黏着斑蛋白单克隆抗体 小鼠抗, clone hVIN-1, ascites fluid
Sigma-Aldrich
抗肌动蛋白,α-平滑肌抗体,小鼠单克隆, clone 1A4, purified from hybridoma cell culture
Sigma-Aldrich
1-(3-二甲基氨基丙基)-3-乙基碳二亚胺, ≥97.0% (T)
Sigma-Aldrich
Goat Serum Donor Herd, USA origin, sterile-filtered, suitable for cell culture
Sigma-Aldrich
GW2580, ≥98% (HPLC)