跳轉至內容
Merck
  • Fast reconstruction for multichannel compressed sensing using a hierarchically semiseparable solver.

Fast reconstruction for multichannel compressed sensing using a hierarchically semiseparable solver.

Magnetic resonance in medicine (2014-03-19)
Stephen F Cauley, Yuanzhe Xi, Berkin Bilgic, Jianlin Xia, Elfar Adalsteinsson, Venkataramanan Balakrishnan, Lawrence L Wald, Kawin Setsompop
摘要

The adoption of multichannel compressed sensing (CS) for clinical magnetic resonance imaging (MRI) hinges on the ability to accurately reconstruct images from an undersampled dataset in a reasonable time frame. When CS is combined with SENSE parallel imaging, reconstruction can be computationally intensive. As an alternative to iterative methods that repetitively evaluate a forward CS+SENSE model, we introduce a technique for the fast computation of a compact inverse model solution. A recently proposed hierarchically semiseparable (HSS) solver is used to compactly represent the inverse of the CS+SENSE encoding matrix to a high level of accuracy. To investigate the computational efficiency of the proposed HSS-Inverse method, we compare reconstruction time with the current state-of-the-art. In vivo 3T brain data at multiple image contrasts, resolutions, acceleration factors, and number of receive channels were used for this comparison. The HSS-Inverse method allows for >6× speedup when compared to current state-of-the-art reconstruction methods with the same accuracy. Efficient computational scaling is demonstrated for CS+SENSE with respect to image size. The HSS-Inverse method is also shown to have minimal dependency on the number of parallel imaging channels/acceleration factor. The proposed HSS-Inverse method is highly efficient and should enable real-time CS reconstruction on standard MRI vendors' computational hardware.

材料
產品編號
品牌
產品描述

Sigma-Aldrich
Tetrazolium Violet