跳轉至內容
Merck
  • Mechanistic basis of altered morphine disposition in nonalcoholic steatohepatitis.

Mechanistic basis of altered morphine disposition in nonalcoholic steatohepatitis.

The Journal of pharmacology and experimental therapeutics (2014-12-17)
Anika L Dzierlenga, John D Clarke, Tiffanie L Hargraves, Garrett R Ainslie, Todd W Vanderah, Mary F Paine, Nathan J Cherrington
摘要

Morphine is metabolized in humans to morphine-3-glucuronide (M3G) and the pharmacologically active morphine-6-glucuronide (M6G). The hepatobiliary disposition of both metabolites relies upon multidrug resistance-associated proteins Mrp3 and Mrp2, located on the sinusoidal and canalicular membrane, respectively. Nonalcoholic steatohepatitis (NASH), the severe stage of nonalcoholic fatty liver disease, alters xenobiotic metabolizing enzyme and transporter function. The purpose of this study was to determine whether NASH contributes to the large interindividual variability and postoperative adverse events associated with morphine therapy. Male Sprague-Dawley rats were fed a control diet or a methionine- and choline-deficient diet to induce NASH. Radiolabeled morphine (2.5 mg/kg, 30 µCi/kg) was administered intravenously, and plasma and bile (0-150 or 0-240 minutes), liver and kidney, and cumulative urine were analyzed for morphine and M3G. The antinociceptive response to M6G (5 mg/kg) was assessed (0-12 hours) after direct intraperitoneal administration since rats do not produce M6G. NASH caused a net decrease in morphine concentrations in the bile and plasma and a net increase in the M3G/morphine plasma area under the concentration-time curve ratio, consistent with upregulation of UDP-glucuronosyltransferase Ugt2b1. Despite increased systemic exposure to M3G, NASH resulted in decreased biliary excretion and hepatic accumulation of M3G. This shift toward systemic retention is consistent with the mislocalization of canalicular Mrp2 and increased expression of sinusoidal Mrp3 in NASH and may correlate to increased antinociception by M6G. Increased metabolism and altered transporter regulation in NASH provide a mechanistic basis for interindividual variability in morphine disposition that may lead to opioid-related toxicity.

材料
產品編號
品牌
產品描述

Sigma-Aldrich
乙酸, glacial, ACS reagent, ≥99.7%
Sigma-Aldrich
甘油, ACS reagent, ≥99.5%
Sigma-Aldrich
乙酸, glacial, ReagentPlus®, ≥99%
Sigma-Aldrich
甘油, for molecular biology, ≥99.0%
Sigma-Aldrich
甘油, ReagentPlus®, ≥99.0% (GC)
Sigma-Aldrich
正丁醇, 99.9%
Sigma-Aldrich
氯化钠, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
正丁醇, ACS reagent, ≥99.4%
Sigma-Aldrich
乙酸, glacial, ≥99.99% trace metals basis
Sigma-Aldrich
氯化钠 溶液, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
正丁醇, suitable for HPLC, ≥99.7%
Sigma-Aldrich
氯化钠 溶液, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
乙酸 溶液, suitable for HPLC
Sigma-Aldrich
乙酸, glacial, puriss., meets analytical specification of Ph. Eur., BP, USP, FCC, 99.8-100.5%
Sigma-Aldrich
氯化钠, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
乙酸, glacial, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8%
Sigma-Aldrich
氯化钠, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
甘油 溶液, 83.5-89.5% (T)
Sigma-Aldrich
乙二胺四乙酸 溶液, 0.02% in DPBS (0.5 mM), sterile-filtered, BioReagent, suitable for cell culture
SAFC
氯化钠 溶液, 5 M
Sigma-Aldrich
甘油, ≥99.5%
Sigma-Aldrich
甘油, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for electrophoresis, ≥99% (GC)
Sigma-Aldrich
甘油, puriss., anhydrous, 99.0-101.0% (alkalimetric)
Sigma-Aldrich
甘油, BioUltra, for molecular biology, anhydrous, ≥99.5% (GC)
Sigma-Aldrich
乙二胺四乙酸, ACS reagent, 99.4-100.6%, powder
USP
甘油, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
氯化钠 溶液, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
乙二胺四乙酸, anhydrous, crystalline, BioReagent, suitable for cell culture
Sigma-Aldrich
乙二胺四乙酸, 99.995% trace metals basis
Sigma-Aldrich
正丁醇, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.5% (GC)