跳轉至內容
Merck
  • Computational library design for increasing haloalkane dehalogenase stability.

Computational library design for increasing haloalkane dehalogenase stability.

Chembiochem : a European journal of chemical biology (2014-07-01)
Robert J Floor, Hein J Wijma, Dana I Colpa, Aline Ramos-Silva, Peter A Jekel, Wiktor Szymański, Ben L Feringa, Siewert J Marrink, Dick B Janssen
摘要

We explored the use of a computational design framework for the stabilization of the haloalkane dehalogenase LinB. Energy calculations, disulfide bond design, molecular dynamics simulations, and rational inspection of mutant structures predicted many stabilizing mutations. Screening of these in small mutant libraries led to the discovery of seventeen point mutations and one disulfide bond that enhanced thermostability. Mutations located in or contacting flexible regions of the protein had a larger stabilizing effect than mutations outside such regions. The combined introduction of twelve stabilizing mutations resulted in a LinB mutant with a 23 °C increase in apparent melting temperature (Tm,app , 72.5 °C) and an over 200-fold longer half-life at 60 °C. The most stable LinB variants also displayed increased compatibility with co-solvents, thus allowing substrate conversion and kinetic resolution at much higher concentrations than with the wild-type enzyme.

材料
產品編號
品牌
產品描述

Sigma-Aldrich
硫酸镁, anhydrous, ReagentPlus®, ≥99.5%
Sigma-Aldrich
硫酸镁, anhydrous, reagent grade, ≥97%
Sigma-Aldrich
硫酸镁, anhydrous, free-flowing, Redi-Dri, ReagentPlus®, ≥99.5%
Sigma-Aldrich
硫酸镁, BioReagent, suitable for cell culture, suitable for insect cell culture
Sigma-Aldrich
硫酸镁, puriss. p.a., drying agent, anhydrous, ≥98.0% (KT), powder (very fine)
Sigma-Aldrich
硫酸镁 溶液, for molecular biology, 1.00 M±0.04 M
Sigma-Aldrich
硫酸镁, anhydrous, free-flowing, Redi-Dri, reagent grade, ≥97%
Sigma-Aldrich
硫酸镁 溶液, BioUltra, for molecular biology
Sigma-Aldrich
硫酸镁, ≥99.99% trace metals basis