跳轉至內容
Merck

Human breast tumor cells express multimodal imaging reporter genes.

Molecular imaging and biology : MIB : the official publication of the Academy of Molecular Imaging (2008-06-19)
Kurt M Lin, Ching-Han Hsu, Wun-Shaing W Chang, Chiung-Tong Chen, Te-Wei Lee, Chin-Tu Chen
摘要

Human ZR75-1 cells were among the first few characterized estrogen-dependent mammary gland carcinoma cell lines and had been utilized in various studies for the pro- or antitumor effect of xenoestrogens and antiestrogens. The objective of this study was to establish a breast tumor model in ZR75-1 cells bearing multimodal reporter genes to allow noninvasive imaging of tumor growth using fluorescence and nuclear imaging platforms. Enhanced green fluorescent protein (eGFP) cDNA was fused at the C-terminus with herpes simplex virus type 1 thymidine kinase (HSV1-tk) to form the fusion reporter gene (eGFP-tk). In vitro proliferation, migration, and invasion assays revealed that eGFP-tk-transfected ZR75-1 cells exhibited decreased proliferation rate, migratory activity, and invasion ability compared to the wild-type cells. The functional HSV1-tk enzymatic activity in stably transfected cells were confirmed by in vitro ganciclovir (GCV) sensitivity and [123I]2-fluoro-2-deoxy-1-beta-D-arabinofuranosyl-5-iodouracil (FIAU) accumulation assays. In vivo fluorescence and nuclear imaging were performed on nude mice bearing multiple subcutaneous xenografts established from ZR75-1-eGFP-tk and wild-type cells. Optical imaging was able to detect the green fluorescence of eGFP-tk tumor. The eGFP-tk reporter gene-specific imaging was achieved by single photon emission computed tomography (SPECT) using [123I]FIAU as a radiotracer and demonstrated decreased FIAU uptake in eGFP-tk tumor by GCV treatment. Probably due to a flare reaction after GCV treatment, micro-positron emission tomography (micro-PET) imaging using 2-deoxy-2-[18F]fluoro-D-glucose (FDG) could not demonstrate decreases in FDG uptake. However, in vitro metabolic assay also revealed that eGFP-tk cells transiently increased [3H]-deoxyglucose uptake in response to GCV treatment. This study confirmed the usefulness of eGFP-tk in many applications by providing, in vitro and in vivo, the sensitive and reporter gene-specific imaging. ZR75-1-eGFP-tk cells that are ready to incorporate in various imaging platforms constitute a useful model in breast cancer research.

材料
產品編號
品牌
產品描述

Sigma-Aldrich
Fialuridine, ≥98% (HPLC)