跳轉至內容
Merck
  • Effect of glycosylation inhibitors on N-glycosylpeptides and on invasion of malignant mouse MO4 cells in vitro.

Effect of glycosylation inhibitors on N-glycosylpeptides and on invasion of malignant mouse MO4 cells in vitro.

Journal of cell science (1990-02-01)
E A Bruyneel, M De Mets, C H Dragonetti, R J Hooghe, S Di Virgilio, M M Mareel
摘要

Cell surface glycans are believed to play a role in tumour invasion and metastasis. Yet, we have previously shown that the inhibitors of N-linked glycan processing swainsonine (SW) and 1-deoxynojirimycin (dNM) did not prevent invasion of chick heart fragments by MO4 murine fibrosarcoma cells in organ culture. We now present biochemical evidence that these and other inhibitors of processing were indeed effective in remodeling glycans, including those expressed at the cell surface. After metabolic labeling with tritiated mannose or fucose, glycosylpeptides were obtained by Pronase treatment of material released from intact cells by trypsin. Glycosylpeptides were separated by Biogel P-10 chromatography. With all drugs tested, there was a shift towards lower molecular weight of the glycan chains. There were, however, major quantitative differences between the different drugs and also, for monensin (MON; 0.1 microgram ml-1), between fucose-labeled and mannose-labeled chains. The shift in apparent molecular weight affected mainly fucose-labeled peptides after treatment of MO4 cells with SW (0.4 microgram ml-1). The shift induced by dNM (10 mM) + SW (0.4 microgram ml-1) in both fucosylated and mannosylated chains was much larger than that induced by SW given alone. 1-Deoxymannojirimycin (dMM; 1 mM) had major effects on both mannose and fucose-labeled structures and so did N-methyl-1-deoxynojirimycin (MdNM; 2 mM) and castanospermine (CS; 100 micrograms ml-1). With the latter drugs, incorporation of fucose in complex-type glycosylpeptides was dramatically reduced. The effect of SW on fucose-labeled glycosylpeptides of embryonic chick heart was similar to that observed on MO4 cells.(ABSTRACT TRUNCATED AT 250 WORDS)