跳轉至內容
Merck
  • Low concentrations of silver nanoparticles in biosolids cause adverse ecosystem responses under realistic field scenario.

Low concentrations of silver nanoparticles in biosolids cause adverse ecosystem responses under realistic field scenario.

PloS one (2013-03-08)
Benjamin P Colman, Christina L Arnaout, Sarah Anciaux, Claudia K Gunsch, Michael F Hochella, Bojeong Kim, Gregory V Lowry, Bonnie M McGill, Brian C Reinsch, Curtis J Richardson, Jason M Unrine, Justin P Wright, Liyan Yin, Emily S Bernhardt
摘要

A large fraction of engineered nanomaterials in consumer and commercial products will reach natural ecosystems. To date, research on the biological impacts of environmental nanomaterial exposures has largely focused on high-concentration exposures in mechanistic lab studies with single strains of model organisms. These results are difficult to extrapolate to ecosystems, where exposures will likely be at low-concentrations and which are inhabited by a diversity of organisms. Here we show adverse responses of plants and microorganisms in a replicated long-term terrestrial mesocosm field experiment following a single low dose of silver nanoparticles (0.14 mg Ag kg(-1) soil) applied via a likely route of exposure, sewage biosolid application. While total aboveground plant biomass did not differ between treatments receiving biosolids, one plant species, Microstegium vimeneum, had 32 % less biomass in the Slurry+AgNP treatment relative to the Slurry only treatment. Microorganisms were also affected by AgNP treatment, which gave a significantly different community composition of bacteria in the Slurry+AgNPs as opposed to the Slurry treatment one day after addition as analyzed by T-RFLP analysis of 16S-rRNA genes. After eight days, N2O flux was 4.5 fold higher in the Slurry+AgNPs treatment than the Slurry treatment. After fifty days, community composition and N2O flux of the Slurry+AgNPs treatment converged with the Slurry. However, the soil microbial extracellular enzymes leucine amino peptidase and phosphatase had 52 and 27% lower activities, respectively, while microbial biomass was 35% lower than the Slurry. We also show that the magnitude of these responses was in all cases as large as or larger than the positive control, AgNO3, added at 4-fold the Ag concentration of the silver nanoparticles.

材料
產品編號
品牌
產品描述

Sigma-Aldrich
硝酸银, ACS reagent, ≥99.0%
Sigma-Aldrich
硝酸银, ReagentPlus®, ≥99.0% (titration)
Sigma-Aldrich
硝酸银, 99.9999% trace metals basis
Sigma-Aldrich
硝酸银, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8%
Sigma-Aldrich
硝酸银, meets analytical specification of Ph. Eur., BP, USP, 99.8-100.5%
Sigma-Aldrich
硝酸银, puriss. p.a., ≥99.5% (AT)
Sigma-Aldrich
硝酸银, BioReagent, suitable for plant cell culture, >99% (titration)
Sigma-Aldrich
硝酸银 溶液, 2.5 % (w/v) AgNO3 in H2O
Sigma-Aldrich
硅胶负载硝酸银, extent of labeling: ~10 wt. % loading, +230 mesh
Sigma-Aldrich
硝酸银, BioXtra, >99% (titration)
Sigma-Aldrich
硝酸银, tested according to Ph. Eur.