跳轉至內容
Merck
  • Alcohol enhanced permeation in model membranes. Part II. Thermodynamic analysis of membrane partitioning.

Alcohol enhanced permeation in model membranes. Part II. Thermodynamic analysis of membrane partitioning.

International journal of pharmaceutics (2011-09-08)
Gabriela Oliveira, Anthony E Beezer, Jonathan Hadgraft, Majella E Lane
摘要

The role of solvents in drug transport has not been properly addressed in the literature, despite its well known influence on drug permeation. Previously we have conducted thermodynamic and kinetic analyses to probe the molecular mechanisms of alcohol enhanced permeation. In the present study, the influence of temperature on the partitioning of methyl paraben into silicone membranes is investigated. In line with previous membrane transport studies of methyl paraben in silicone membranes, butanol and heptanol are used as representative alcohols. The results show higher amounts of methyl paraben extracted from the silicone membrane following equilibration with butanol, at all experimental temperatures. This was in line with alcohol uptake data. In fact, a linear correlation (r(2) ∼0.97) was found between the amount of methyl paraben in the silicone membrane and the corresponding alcohol uptake. Calculated "specific" vehicle-membrane partition coefficients for both alcohols were approximately one, suggesting that the effective concentrations of methyl paraben inside and outside the membrane were the same. Thermodynamic analysis of the alcohol-membrane partition coefficients as a function of temperature showed no apparent trend for butanol, with an associated enthalpy change of approximately zero. Conversely, there was a positive trend in the van't Hoff plot for methyl paraben in heptanol, indicative of an exothermic process. Moreover, the partitioning trends of methyl paraben in silicone membranes obtained from membrane transport and equilibrium experiments were not the same. This reflects the fundamental differences between the calculated vehicle-membrane partition coefficients in the two studies. Finally, the findings from membrane transport and equilibrium experiments support a model of alcohol enhanced permeation where high solvent sorption promotes high solute concentrations in the overall volume of the membrane (i.e. K), thus leading to modified solute transport (i.e. increased flux). The same model also accounts for changes in membrane diffusivity (i.e. D) related to the properties of the imbibed alcohol.

材料
產品編號
品牌
產品描述

Supelco
对羟基安息香甲酯, PESTANAL®, analytical standard
Sigma-Aldrich
正庚醇, 98%
Sigma-Aldrich
4-羟基苯甲酸甲酯, BioReagent, suitable for insect cell culture
Supelco
对羟基苯甲酸甲酯, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
4-羟基苯甲酸甲酯, ≥99%, FCC
Sigma-Aldrich
4-羟基苯甲酸甲酯, ReagentPlus®, ≥99.0%, crystalline
Sigma-Aldrich
正庚醇, ≥99.5% (GC)
Sigma-Aldrich
庚醇, ≥97%, FCC, FG
对羟基苯甲酸甲酯, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
4-羟基苯甲酸甲酯, BioXtra, ≥99.0% (titration)
Sigma-Aldrich
4-羟基苯甲酸甲酯, analytical standard
Sigma-Aldrich
4-羟基苯甲酸甲酯, tested according to Ph. Eur.
Supelco
正庚醇, analytical standard, ≥99.5% (GC)