跳轉至內容
Merck
  • Convergent evolution in biosynthesis of cyanogenic defence compounds in plants and insects.

Convergent evolution in biosynthesis of cyanogenic defence compounds in plants and insects.

Nature communications (2011-04-21)
Niels Bjerg Jensen, Mika Zagrobelny, Karin Hjernø, Carl Erik Olsen, Jens Houghton-Larsen, Jonas Borch, Birger Lindberg Møller, Søren Bak
摘要

For more than 420 million years, plants, insects and their predators have co-evolved based on a chemical arms race including deployment of refined chemical defence systems by each player. Cyanogenic glucosides are produced by numerous plants and by some specialized insects and serve an important role as defence compounds in these intimate interactions. Burnet moth larvae are able to sequester cyanogenic glucosides from their food plant as well as to carry out de novo biosynthesis. Here we show that three genes (CYP405A2, CYP332A3 and UGT33A1) encode the entire biosynthetic pathway of cyanogenic glucosides in the Burnet moth Zygaena filipendulae. In both plants and insects, convergent evolution has led to two multifunctional P450 enzymes each catalysing unusual reactions and a glucosyl-transferase acting in sequence to catalyse cyanogenic glucoside formation. Thus, plants and insects have independently found a way to package a cyanide time bomb to fend off herbivores and predators.

材料
產品編號
品牌
產品描述

Supelco
SPME固相微萃取萃取头 Carboxen/聚二甲基硅氧烷 (CAR/PDMS), df 85 μm(CAR/PDMS, needle size 24 ga, for use with manual holder, StableFlex fiber
Sigma-Aldrich
α-羟基异丁腈 β- D -吡喃葡萄糖苷, ≥97% (HPLC)