跳轉至內容
Merck
  • Synthesis and intestinal transport of the iron chelator maltosine in free and dipeptide form.

Synthesis and intestinal transport of the iron chelator maltosine in free and dipeptide form.

European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V (2011-01-11)
Stefanie Geissler, Michael Hellwig, Fritz Markwardt, Thomas Henle, Matthias Brandsch
摘要

Maltosine, a 3-hydroxy-4-pyridinone derivative of lysine formed in the course of the advanced Maillard reaction, is an effective metal chelating agent. It therefore represents an interesting compound for the treatment of metal ion storage diseases. We synthesized 6-(3-hydroxy-4-oxo-2-methyl-4(1H)-pyridin-1-yl)-l-norleucine (free maltosine) and its dipeptide derivatives alanylmaltosine (Ala-Mal) and maltosinylalanine (Mal-Ala) and examined the transepithelial flux of these compounds across Caco-2 cells and their interaction with membrane transporters. Transepithelial flux of maltosine was significantly higher when added as Ala-Mal and Mal-Ala than in free form. Assays at Caco-2 cells and at HeLa cells expressing the human peptide transporter (hPEPT)1 revealed that Ala-Mal and Mal-Ala show medium to high affinity to the system. Only free but not peptide-bound maltosine inhibited the uptake of l-[(3)H]lysine in Caco-2 and OK cells. Maltosine dipeptides were transported by hPEPT1 across cell membranes and accumulated in hPEPT1-transfected HeLa cells. In electrophysiological measurements at hPEPT1-expressing Xenopus laevis oocytes, Ala-Mal and Mal-Ala induced significant inward directed currents. We conclude that Ala-Mal and Mal-Ala are transported by hPEPT1 into intestinal cells and then hydrolyzed to free maltosine and alanine. The results suggest that the oral bioavailability of maltosine can be increased significantly by applying this drug candidate in peptide-bound form.

材料
產品編號
品牌
產品描述

Sigma-Aldrich
L-正亮氨酸, ≥98% (TLC)
Sigma-Aldrich
L-正亮氨酸, suitable for amino acid analysis, BioReagent