跳轉至內容
Merck
  • Poly(ADP-ribose) polymerase-1 inhibition prevents eosinophil recruitment by modulating Th2 cytokines in a murine model of allergic airway inflammation: a potential specific effect on IL-5.

Poly(ADP-ribose) polymerase-1 inhibition prevents eosinophil recruitment by modulating Th2 cytokines in a murine model of allergic airway inflammation: a potential specific effect on IL-5.

Journal of immunology (Baltimore, Md. : 1950) (2006-10-24)
Mustapha Oumouna, Oumouna Mustapha, Rahul Datta, Karine Oumouna-Benachour, Yasuhiro Suzuki, Chetan Hans, Kametra Matthews, Kenneth Fallon, Hamid Boulares
摘要

We recently used a murine model of allergic airway inflammation to show that poly(ADP-ribose) polymerase-1 (PARP-1) plays an important role in the pathogenesis of asthma-related lung inflammation. In this study, we show that PARP-1 inhibition, by a novel inhibitor (TIQ-A) or by gene deletion, prevented eosinophilic infiltration into the airways of OVA-challenged mice. Such impairment of eosinophil recruitment appeared to take place after IgE production. OVA challenge of wild-type mice resulted in a significant increase in IL-4, IL-5, IL-10, IL-13, and GM-CSF secretions. Although IL-4 production was moderately affected in OVA-challenged PARP-1(-/-) mice, the production of IL-5, IL-10, IL-13, and GM-CSF was completely inhibited in ex vivo OVA-challenged lung cells derived from these animals. A single TIQ-A injection before OVA challenge in wild-type mice mimicked the latter effects. The marked effect PARP-1 inhibition exerted on mucus production corroborated the effects observed on the Th2 response. Although PARP-1 inhibition by gene knockout increased the production of the Th1 cytokines IL-2 and IL-12, the inhibition by TIQ-A exerted no effect on these two cytokines. The failure of lung cells derived from OVA-challenged PARP-1(-/-) mice to synthesize GM-CSF, a key cytokine in eosinophil recruitment, was reestablished by replenishment of IL-5. Furthermore, intranasal administration of IL-5 restored the impairment of eosinophil recruitment and mucus production in OVA-challenged PARP-1(-/-) mice. The replenishment of either IL-4 or IgE, however, did not result in such phenotype reversals. Altogether, these results suggest that PARP-1 plays a critical role in eosinophil recruitment by specifically regulating the cascade leading to IL-5 production.