跳轉至內容
Merck
  • Lung-borne systemic inflammation in mechanically ventilated infant rats due to high PEEP, oxygen, and hypocapnia.

Lung-borne systemic inflammation in mechanically ventilated infant rats due to high PEEP, oxygen, and hypocapnia.

American journal of translational research (2022-02-18)
Philipp Baumann, Francesco Greco, Pietro L'Abate, Sven Wellmann, Susanne Wiegert, Vincenzo Cannizzaro
摘要

Intensive care practice calls for ventilator adjustments due to fast-changing clinical conditions in ventilated critically ill children. These adaptations include positive end-expiratory pressure (PEEP), fraction of inspired oxygen (FiO2), and respiratory rate (RR). It is unclear which alterations in ventilator settings trigger a significant systemic inflammatory response. Fourteen-day old Wistar rat pups were randomized to the following groups: (a) "control" with tidal volume ~8 mL/kg, PEEP 5 cmH2O, FiO2 0.4, RR 90 min-1, (b) "PEEP 1", (c) "PEEP 9" (d) "FiO2 0.21", (e) "FiO2 1.0", (f) "hypocapnia" with RR of 180 min-1, and (g) "hypercapnia" with RR of 60 min-1. Following 120 min of mechanical ventilation, plasma for inflammatory biomarker analyses was obtained by direct cardiac puncture at the end of the experiment. Interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were driven by FiO2 0.4 and 1.0 (P=0.02, P<0.01, respectively), tissue plasminogen activator inhibitor type-1 (tPAI-1) was increased by high PEEP (9 cmH2O, P<0.05) and hypocapnia (P<0.05), and TNF-α was significantly lower in hypercapnia (P<0.01). Tissue inhibitor of metalloproteinase-1 (TIMP-1), cytokine-induced neutrophil chemoattractant 1 (CINC-1), connective tissue growth factor (CTGF), and monocyte chemoattractant protein-1 (MCP-1) remained unaffected. Alterations of PEEP, FiO2, and respiratory frequency induced a significant systemic inflammatory response in plasma of infant rats. These findings underscore the importance of lung-protective ventilation strategies. However, future studies are needed to clarify whether ventilation induced systemic inflammation in animal models is pathophysiologically relevant to human infants.

材料
產品編號
品牌
產品描述

Millipore
MILLIPLEX® Rat Vascular Injury Magnetic Bead Panel 1 - Toxicity Multiplex Assay, The analytes available for this multiplex kit are: Caveolin-1, CINC-1/GRO/KC, CTGF (Connective Tissue Growth Factor), IL-6, MCP-1, PAI-1 (total), TIMP-1, TNFα, VEGF.