跳轉至內容
Merck
  • ddcP, pstB, and excess D-lactate impact synergism between vancomycin and chlorhexidine against Enterococcus faecium 1,231,410.

ddcP, pstB, and excess D-lactate impact synergism between vancomycin and chlorhexidine against Enterococcus faecium 1,231,410.

PloS one (2021-04-09)
Pooja Bhardwaj, Moutusee Z Islam, Christi Kim, Uyen Thy Nguyen, Kelli L Palmer
摘要

Vancomycin-resistant enterococci (VRE) are important nosocomial pathogens that cause life-threatening infections. To control hospital-associated infections, skin antisepsis and bathing utilizing chlorhexidine is recommended for VRE patients in acute care hospitals. Previously, we reported that exposure to inhibitory chlorhexidine levels induced the expression of vancomycin resistance genes in VanA-type Enterococcus faecium. However, vancomycin susceptibility actually increased for VanA-type E. faecium in the presence of chlorhexidine. Hence, a synergistic effect of the two antimicrobials was observed. In this study, we used multiple approaches to investigate the mechanism of synergism between chlorhexidine and vancomycin in the VanA-type VRE strain E. faecium 1,231,410. We generated clean deletions of 7 of 11 pbp, transpeptidase, and carboxypeptidase genes in this strain (ponA, pbpF, pbpZ, pbpA, ddcP, ldtfm, and vanY). Deletion of ddcP, encoding a membrane-bound carboxypeptidase, altered the synergism phenotype. Furthermore, using in vitro evolution, we isolated a spontaneous synergy escaper mutant and utilized whole genome sequencing to determine that a mutation in pstB, encoding an ATPase of phosphate-specific transporters, also altered synergism. Finally, addition of excess D-lactate, but not D-alanine, enhanced synergism to reduce vancomycin MIC levels. Overall, our work identified factors that alter chlorhexidine and vancomycin synergism in a model VanA-type VRE strain.