跳轉至內容
Merck
  • Promoter-Proximal Chromatin Domain Insulator Protein BEAF Mediates Local and Long-Range Communication with a Transcription Factor and Directly Activates a Housekeeping Promoter in Drosophila.

Promoter-Proximal Chromatin Domain Insulator Protein BEAF Mediates Local and Long-Range Communication with a Transcription Factor and Directly Activates a Housekeeping Promoter in Drosophila.

Genetics (2020-03-18)
Yuankai Dong, S V Satya Prakash Avva, Mukesh Maharjan, Janice Jacobi, Craig M Hart
摘要

BEAF (Boundary Element-Associated Factor) was originally identified as a Drosophila melanogaster chromatin domain insulator-binding protein, suggesting a role in gene regulation through chromatin organization and dynamics. Genome-wide mapping found that BEAF usually binds near transcription start sites, often of housekeeping genes, suggesting a role in promoter function. This would be a nontraditional role for an insulator-binding protein. To gain insight into molecular mechanisms of BEAF function, we identified interacting proteins using yeast two-hybrid assays. Here, we focus on the transcription factor Serendipity δ (Sry-δ). Interactions were confirmed in pull-down experiments using bacterially expressed proteins, by bimolecular fluorescence complementation, and in a genetic assay in transgenic flies. Sry-δ interacted with promoter-proximal BEAF both when bound to DNA adjacent to BEAF or > 2-kb upstream to activate a reporter gene in transient transfection experiments. The interaction between BEAF and Sry-δ was detected using both a minimal developmental promoter (y) and a housekeeping promoter (RpS12), while BEAF alone strongly activated the housekeeping promoter. These two functions for BEAF implicate it in playing a direct role in gene regulation at hundreds of BEAF-associated promoters.

材料
產品編號
品牌
產品描述

Sigma-Aldrich
乙酸锂, 99.95% trace metals basis
Sigma-Aldrich
Shields 和 Sang M3 昆虫培养基, With L-glutamine, without potassium bicarbonate, powder, suitable for insect cell culture