跳轉至內容
Merck
  • Prolonged inhibition and incomplete recovery of mitochondrial function in oxazolidinone-treated megakaryoblastic cell lines.

Prolonged inhibition and incomplete recovery of mitochondrial function in oxazolidinone-treated megakaryoblastic cell lines.

International journal of antimicrobial agents (2019-08-03)
Tamara V Milosevic, Gaëlle Vertenoeil, Valéry L Payen, Pierre Sonveaux, Paul M Tulkens, Stefan N Constantinescu, Françoise Van Bambeke
摘要

Thrombocytopenia is commonly seen in patients receiving linezolid for >14 days. Linezolid is a reversible inhibitor of mitochondrial function in various cell types. This study investigated the inhibitory effects of linezolid and tedizolid, and their potential recovery on (i) CYTox I expression (subunit I of cytochrome c-oxidase; encoded by the mitochondrial genome), (ii) cytochrome c-oxidase activity and (iii) mitochondrial respiration (Seahorse bioanalysis) in two megakaryocytic cell lines [UT-7 WT (human acute megakaryoblastic leukaemia cells) and UT-7 MPL (transduced to express the thrombopoietin receptor)]. Cells were exposed to linezolid (0.5-25 mg/L) or tedizolid (0.1-5 mg/L) for up to 5 days and recovery followed after drug removal. Both oxazolidinones caused concentration- and time-dependent inhibition of CYTox I expression, cytochrome c-oxidase activity and mitochondrial spare capacity. On electron microscopy, mitochondria appeared dilated with a loss of cristae. Globally, tedizolid exerted stronger effects than linezolid. While CYTox I expression recovered completely after 6 days of drug washout, only partial (linezolid) or no (tedizolid) recovery of cytochrome c-oxidase activity, and no rescue of mitochondrial spare capacity (after 3 days) was observed. Thus, and in contrast to previous studies using a variety of cell lines unrelated to megakaryocytic lineages, the inhibitory effects exerted by oxazolidinones on the mitochondrial function of megakaryoblastic cells appear to be particularly protracted. Given the dynamics of platelet production and destruction, these results may explain why oxazolidinone-induced thrombocytopenia is one of the most common side effects in patients exposed to these antibiotics.

材料
產品編號
品牌
產品描述

Sigma-Aldrich
杜氏改良 Eagle 培养基-低葡萄糖, Without glucose, L-glutamine, phenol red, sodium pyruvate and sodium bicarbonate, powder, suitable for cell culture
Sigma-Aldrich
聚-L-赖氨酸 氢溴酸盐, mol wt 70,000-150,000, lyophilized powder, γ-irradiated, BioXtra, suitable for cell culture