跳轉至內容
Merck
  • Phosphorylation of NEUROG3 Links Endocrine Differentiation to the Cell Cycle in Pancreatic Progenitors.

Phosphorylation of NEUROG3 Links Endocrine Differentiation to the Cell Cycle in Pancreatic Progenitors.

Developmental cell (2017-04-26)
Nicole A J Krentz, Dennis van Hoof, Zhongmei Li, Akie Watanabe, Mei Tang, Cuilan Nian, Michael S German, Francis C Lynn
摘要

During pancreatic development, proliferating pancreatic progenitors activate the proendocrine transcription factor neurogenin 3 (NEUROG3), exit the cell cycle, and differentiate into islet cells. The mechanisms that direct robust NEUROG3 expression within a subset of progenitor cells control the size of the endocrine population. Here we demonstrate that NEUROG3 is phosphorylated within the nucleus on serine 183, which catalyzes its hyperphosphorylation and proteosomal degradation. During progression through the progenitor cell cycle, NEUROG3 phosphorylation is driven by the actions of cyclin-dependent kinases 2 and 4/6 at G1/S cell-cycle checkpoint. Using models of mouse and human pancreas development, we show that lengthening of the G1 phase of the pancreatic progenitor cell cycle is essential for proper induction of NEUROG3 and initiation of endocrine cell differentiation. In sum, these studies demonstrate that progenitor cell-cycle G1 lengthening, through its actions on stabilization of NEUROG3, is an essential variable in normal endocrine cell genesis.

材料
產品編號
品牌
產品描述

Sigma-Aldrich
单克隆抗-FLAG® M2 小鼠抗, clone M2, purified immunoglobulin (Purified IgG1 subclass), buffered aqueous solution (10 mM sodium phosphate, 150 mM NaCl, pH 7.4, containing 0.02% sodium azide)
Sigma-Aldrich
抗Sox9抗体, Chemicon®, from rabbit
Sigma-Aldrich
硫酸铜, anhydrous, powder, ≥99.99% trace metals basis
Sigma-Aldrich
硫酸锌 七水合物, BioReagent, suitable for cell culture
Sigma-Aldrich
单克隆抗胰高血糖素 小鼠抗, clone K79bB10, ascites fluid