Skip to Content
Merck
  • Synthesis and bioactivity assessment of high silica content quaternary glasses with Ca: P ratios of 1.5 and 1.67, made by a rapid sol-gel process.

Synthesis and bioactivity assessment of high silica content quaternary glasses with Ca: P ratios of 1.5 and 1.67, made by a rapid sol-gel process.

Journal of biomedical materials research. Part A (2017-09-19)
Basam A E Ben-Arfa, Hugo R Fernandes, Isabel M Miranda Salvado, José M F Ferreira, Robert C Pullar
ABSTRACT

Sol-gel glasses in quaternary silica-sodium-calcium-phosphorous systems have been synthesized using a rotary evaporator for rapid drying without ageing. This novel fast drying method drastically decreases the total drying and ageing time from several weeks to only 1 hour, thus overcoming a serious drawback in sol-gel preparation procedures for bioglasses. This work investigates the bioactivity behavior of two glasses synthesized by this fast method, with Ca:P ratios of 1.5, and 1.67. X-ray diffraction (XRD), Inductive coupled plasma, Fourier-transform infrared, and Raman spectroscopy were used to confirm the bioactivity of the synthesized powders. MAS-NMR was also used to assess the degree of silica polymerization. The composition with a higher Ca:P = 1.67 ratio showed better bioactivity in comparison to the one with Ca:P = 1.5, which exhibited little bio-response with up to 4 weeks of immersion in SBF (simulated body fluid). It was also found that an orbital agitation rate of 120 rpm favors the interfacial bio-mineralization reactions, promoting the formation of a crystalline hydroxyapatite (HAp) layer at the surface of the (Ca:P = 1.67) composition after 2 weeks immersion in SBF. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 510-520, 2018.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium oxide, 80%
SKU
Pack Size
Availability
Price
Quantity