- A novel tri-enzyme system in combination with laser-driven NMR enables efficient nuclear polarization of biomolecules in solution.
A novel tri-enzyme system in combination with laser-driven NMR enables efficient nuclear polarization of biomolecules in solution.
NMR is an extremely powerful, yet insensitive technique. Many available nuclear polarization methods that address sensitivity are not directly applicable to low-concentration biomolecules in liquids and are often too invasive. Photochemically induced dynamic nuclear polarization (photo-CIDNP) is no exception. It needs high-power laser irradiation, which often leads to sample degradation, and photosensitizer reduction. Here, we introduce a novel tri-enzyme system that significantly overcomes the above challenges, rendering photo-CIDNP a practically applicable technique for NMR sensitivity enhancement in solution. The specificity of the nitrate reductase (NR) enzyme is exploited to selectively in situ reoxidize the reduced photo-CIDNP dye FMNH2. At the same time, the oxygen-scavenging ability of glucose oxidase (GO) and catalase (CAT) is synergistically employed to prevent sample photodegradation. The resulting tri-enzyme system (NR-GO-CAT) enables prolonged sensitivity-enhanced data collection in 1D and 2D heteronuclear NMR, leading to the highest photo-CIDNP sensitivity enhancement (48-fold relative to SE-HSQC) achieved to date for amino acids and polypeptides in solution. NR-GO-CAT extends the concentration limit of photo-CIDNP NMR down to the low micromolar range. In addition, sensitivity (relative to the reference SE-HSQC) is found to be inversely proportional to sample concentration, paving the way for the future analysis of even more diluted samples.