- Dietary methionine can sustain cytosolic redox homeostasis in the mouse liver.
Dietary methionine can sustain cytosolic redox homeostasis in the mouse liver.
Across phyla, reduced nicotinamide adenine dinucleotide phosphate (NADPH) transfers intracellular reducing power to thioredoxin reductase-1 (TrxR1) and glutathione reductase (GR), thereby supporting fundamental housekeeping and antioxidant pathways. Here we show that a third, NADPH-independent pathway can bypass the need for TrxR1 and GR in mammalian liver. Most mice genetically engineered to lack both TrxR1 and GR in all hepatocytes ('TR/GR-null livers') remain long-term viable. TR/GR-null livers cannot reduce oxidized glutathione disulfide using NADPH but still require continuous glutathione synthesis. Inhibition of cystathionine γ-lyase causes rapid necrosis of TR/GR-null livers, indicating that methionine-fueled trans-sulfuration supplies the necessary cysteine precursor for glutathione synthesis via an NADPH-independent pathway. We further show that dietary methionine provides the cytosolic disulfide-reducing power and all sulfur amino acids in TR/GR-null livers. Although NADPH is generally considered an essential reducing currency, these results indicate that hepatocytes can adequately sustain cytosolic redox homeostasis pathways using either NADPH or methionine.