Skip to Content
Merck
  • Structure, size, and solubility of antigen arrays determines efficacy in experimental autoimmune encephalomyelitis.

Structure, size, and solubility of antigen arrays determines efficacy in experimental autoimmune encephalomyelitis.

The AAPS journal (2014-09-07)
Joshua O Sestak, Amir Fakhari, Ahmed H Badawi, Teruna J Siahaan, Cory Berkland
ABSTRACT

Presentation of antigen with immune stimulating "signal" has been a cornerstone of vaccine design for decades. Here, the antigen plus immune "signal" of vaccines is modified to produce antigen-specific immunotherapies (antigen-SITs) that can potentially reprogram the immune response toward tolerance of an autoantigen. The codelivery of antigen with a cell adhesion inhibitor using Soluble Antigen Arrays (SAgAs) was previously shown to slow or halt experimental autoimmune encephalomyelitis (EAE), a murine form of multiple sclerosis (MS). SAgAs are comprised of a hyaluronic acid backbone with cografted intercellular cell adhesion molecule-1 ligand derived from αL-integrin (CD11a237-246, "LABL") and an encephalitogenic epitope peptide of proteolipid protein (PLP139-151, "PLP"). Here, the physical characteristics of the carrier were investigated to evaluate how structure, size, and solubility drive the immune response when treating EAE. A bifunctional peptide (small, soluble), SAgAs (large, soluble), and PLGA nanoparticles (large, insoluble) all displaying PLP and LABL in equimolar ratios were compared. Maximum EAE suppression was achieved with coincident display of both peptides on a soluble construct.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) trifluoroacetic acid, suitable for HPLC
Sigma-Aldrich
Acetic acid-12C2, 99.9 atom % 12C
Sigma-Aldrich
D-Mannitol, tested according to Ph. Eur.
Sigma-Aldrich
Acetone, ≥99%, meets FCC analytical specifications
Supelco
Diethyl ether, analytical standard
Sigma-Aldrich
Diethyl ether
Sigma-Aldrich
Diethyl ether, puriss., dried over molecular sieve (H2O ≤0.005%), ≥99.8% (GC)
Supelco
Mannitol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Acetone, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%
Sigma-Aldrich
Acetic acid, glacial, puriss., meets analytical specification of Ph. Eur., BP, USP, FCC, 99.8-100.5%
Sigma-Aldrich
Diethyl ether, anhydrous, ACS reagent, ≥99.0%, contains BHT as inhibitor
Sigma-Aldrich
Diethyl ether, ACS reagent, anhydrous, ≥99.0%, contains BHT as inhibitor
Sigma-Aldrich
Sodium acetate solution, BioUltra, for molecular biology, ~3 M in H2O
Sigma-Aldrich
Sodium acetate, anhydrous, free-flowing, Redi-Dri, ACS reagent, ≥99.0%
Sigma-Aldrich
Sodium acetate, ACS reagent, ≥99.0%
Supelco
Residual Solvent - Acetonitrile(solution in DMSO), Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
D-Mannitol, ≥98% (GC), suitable for plant cell culture
Sigma-Aldrich
D-Mannitol, BioXtra, ≥98% (HPLC)
Millipore
D-Mannitol, ACS reagent, suitable for microbiology, ≥99.0%
Sigma-Aldrich
D-Mannitol, meets EP, FCC, USP testing specifications
Sigma-Aldrich
D-Mannitol, ACS reagent
Sigma-Aldrich
D-Mannitol, BioUltra, ≥99.0% (sum of enantiomers, HPLC)
Supelco
D-Mannitol, ≥99.9999% (metals basis), for boron determination
Sigma-Aldrich
D-Mannitol, ≥98% (GC)
Sigma-Aldrich
Diethyl ether, contains 1 ppm BHT as inhibitor, anhydrous, ≥99.7%
Sigma-Aldrich
Diethyl ether, suitable for HPLC, ≥99.9%, inhibitor-free
USP
Mannitol, United States Pharmacopeia (USP) Reference Standard
Supelco
Acetonitrile(Neat), Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Acetone, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Acetic acid, ≥99.5%, FCC, FG