Skip to Content
Merck
  • Covalent conjugation of a peptide triazole to HIV-1 gp120 enables intramolecular binding site occupancy.

Covalent conjugation of a peptide triazole to HIV-1 gp120 enables intramolecular binding site occupancy.

Biochemistry (2014-05-08)
Ali Emileh, Caitlin Duffy, Andrew P Holmes, Arangassery Rosemary Bastian, Rachna Aneja, Ferit Tuzer, Srivats Rajagopal, Huiyuan Li, Cameron F Abrams, Irwin M Chaiken
ABSTRACT

The HIV-1 gp120 glycoprotein is the main viral surface protein responsible for initiation of the entry process and, as such, can be targeted for the development of entry inhibitors. We previously identified a class of broadly active peptide triazole (PT) dual antagonists that inhibit gp120 interactions at both its target receptor and coreceptor binding sites, induce shedding of gp120 from virus particles prior to host-cell encounter, and consequently can prevent viral entry and infection. However, our understanding of the conformational alterations in gp120 by which PT elicits its dual receptor antagonism and virus inactivation functions is limited. Here, we used a recently developed computational model of the PT-gp120 complex as a blueprint to design a covalently conjugated PT-gp120 recombinant protein. Initially, a single-cysteine gp120 mutant, E275CYU-2, was expressed and characterized. This variant retains excellent binding affinity for peptide triazoles, for sCD4 and other CD4 binding site (CD4bs) ligands, and for a CD4-induced (CD4i) ligand that binds the coreceptor recognition site. In parallel, we synthesized a PEGylated and biotinylated peptide triazole variant that retained gp120 binding activity. An N-terminally maleimido variant of this PEGylated PT, denoted AE21, was conjugated to E275C gp120 to produce the AE21-E275C covalent conjugate. Surface plasmon resonance interaction analysis revealed that the PT-gp120 conjugate exhibited suppressed binding of sCD4 and 17b to gp120, signatures of a PT-bound state of envelope protein. Similar to the noncovalent PT-gp120 complex, the covalent conjugate was able to bind the conformationally dependent mAb 2G12. The results argue that the PT-gp120 conjugate is structurally organized, with an intramolecular interaction between the PT and gp120 domains, and that this structured state embodies a conformationally entrapped gp120 with an altered bridging sheet but intact 2G12 epitope. The similarities of the PT-gp120 conjugate to the noncovalent PT-gp120 complex support the orientation of binding of PT to gp120 predicted in the molecular dynamics simulation model of the PT-gp120 noncovalent complex. The conformationally stabilized covalent conjugate can be used to expand the structural definition of the PT-induced "off" state of gp120, for example, by high-resolution structural analysis. Such structures could provide a guide for improving the subsequent structure-based design of inhibitors with the peptide triazole mode of action.

MATERIALS
Product Number
Brand
Product Description

Supelco
Glycine, certified reference material, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland
Supelco
Glycine, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
o-Phenylenediamine dihydrochloride, tablet, 30 mg substrate per tablet
Sigma-Aldrich
o-Phenylenediamine dihydrochloride, tablet, 1 mg substrate per tablet
Sigma-Aldrich
o-Phenylenediamine dihydrochloride, tablet, 5 mg substrate per tablet
Sigma-Aldrich
o-Phenylenediamine dihydrochloride, tablet, 4 mg substrate per tablet
Sigma-Aldrich
o-Phenylenediamine dihydrochloride, tablet, 5 mg substrate per tablet
Sigma-Aldrich
o-Phenylenediamine dihydrochloride, tablet, 10 mg substrate per tablet
Sigma-Aldrich
Glycine, BioUltra, for molecular biology, ≥99.0% (NT)
Sigma-Aldrich
Glycine, tested according to Ph. Eur.
Supelco
Glycine, analytical standard, for nitrogen determination according to Kjeldahl method
Sigma-Aldrich
o-Phenylenediamine dihydrochloride, peroxidase substrate
Sigma-Aldrich
Glycine, ReagentPlus®, ≥99% (HPLC)
Sigma-Aldrich
Glycine, BioXtra, ≥99% (titration)
Sigma-Aldrich
o-Phenylenediamine dihydrochloride, tablet, 3 mg substrate per tablet
Sigma-Aldrich
o-Phenylenediamine dihydrochloride, tablet, 15 mg substrate per tablet
Sigma-Aldrich
o-Phenylenediamine dihydrochloride, tablet, 20 mg substrate per tablet
SAFC
Glycine
Sigma-Aldrich
Glycine, puriss. p.a., reag. Ph. Eur., buffer substance, 99.7-101% (calc. to the dried substance)
Sigma-Aldrich
Glycine, 99%, FCC
Sigma-Aldrich
Glycine, meets analytical specification of Ph. Eur., BP, USP, 99-101% (based on anhydrous substance)
Sigma-Aldrich
Glycine, from non-animal source, meets EP, JP, USP testing specifications, suitable for cell culture, ≥98.5%
Sigma-Aldrich
Glycine, suitable for electrophoresis, ≥99%
Sigma-Aldrich
o-Phenylenediamine dihydrochloride, tablet, 60 mg substrate per tablet
Sigma-Aldrich
o-Phenylenediamine dihydrochloride, tablet, 2 mg substrate per tablet
Sigma-Aldrich
Glycine, ACS reagent, ≥98.5%
Sigma-Aldrich
Glycine, Vetec, reagent grade, 98%
USP
Glycine, United States Pharmacopeia (USP) Reference Standard
Glycine, European Pharmacopoeia (EP) Reference Standard