Skip to Content
Merck
  • Determination of patulin in fruit juice and dried fruit samples by in-tube solid-phase microextraction coupled with liquid chromatography-mass spectrometry.

Determination of patulin in fruit juice and dried fruit samples by in-tube solid-phase microextraction coupled with liquid chromatography-mass spectrometry.

Journal of chromatography. A (2009-03-25)
H Kataoka, M Itano, A Ishizaki, K Saito
ABSTRACT

A simple and sensitive method for the determination of patulin in fruit juice and dried fruit samples was developed using a fully automated method consisting of in-tube solid-phase microextraction (SPME) coupled with liquid chromatography-mass spectrometry (LC-MS). Patulin was separated within 5 min by high-performance liquid chromatography using a Synergi MAX-RP 80A column and water/acetonitrile (80/20, v/v) as the mobile phase. Electrospray ionization conditions in the negative ion mode were optimized for MS detection of patulin. The pseudo-molecular ion [M-H](-) was used to detect patulin in selected ion monitoring (SIM) mode. The optimum in-tube SPME conditions were 25 draw/eject cycles of 40 microL of sample using a Carboxen 1006 PLOT capillary column as an extraction device. The extracted patulin was readily desorbed from the capillary by passage of the mobile phase, and no carry-over was observed. Using the in-tube SPME LC-MS with SIM method, good linearity of the calibration curve (r=0.9996) was obtained in the concentration range of 0.5-20 ng/mL using (13)C(3)-patulin as an internal standard, and the detection limit (S/N=3) of patulin was 23.5 pg/mL. The in-tube SPME method showed >83-fold higher sensitivity than the direct injection method (10 microL injection volume). The within-day and between-day precision (relative standard deviations) were below 0.8% and 5.0% (n=6), respectively. This method was applied successfully for the analysis of fruit juice and dried fruit samples without interference peaks. The recoveries of patulin spiked into apple juice were >92%, and the relative standard deviations were <4.5%. Patulin was detected at ng/mL levels in various commercial apple juice samples.

MATERIALS
Product Number
Brand
Product Description

Supelco
SPME fiber assembly Divinylbenzene/Carboxen/Polydimethylsiloxane (DVB/CAR/PDMS), needle size 23 ga, StableFlex, for use with manual holder or autosampler, fiber L 2 cm
Supelco
SPME fiber assembly Carboxen/Polydimethylsiloxane (CAR/PDMS), df 85 μm(CAR/PDMS, needle size 23 ga, StableFlex, for use with autosampler
Supelco
SPME fiber assembly Carboxen/Polydimethylsiloxane (CAR/PDMS), df 85 μm(CAR/PDMS, for use with autosampler, needle size 23 ga, metal alloy fiber
Supelco
SPME fiber assembly Divinylbenzene/Carboxen/Polydimethylsiloxane (DVB/CAR/PDMS), for use with autosampler, needle size 23 ga, metal alloy fiber, fiber L 1 cm
Supelco
SPME fiber assembly Divinylbenzene/Carboxen/Polydimethylsiloxane (DVB/CAR/PDMS), for use with autosampler, needle size 23 ga, metal alloy fiber, fiber L 2 cm
Supelco
SPME fiber assembly Divinylbenzene/Carboxen/Polydimethylsiloxane (DVB/CAR/PDMS), needle size 23 ga, StableFlex, for use with autosampler
Supelco
SPME fiber assembly Carboxen/Polydimethylsiloxane (CAR/PDMS), df 75 μm(CAR/PDMS, needle size 23 ga, for use with manual holder
Supelco
SPME fiber assembly Divinylbenzene/Carboxen/Polydimethylsiloxane (DVB/CAR/PDMS), needle size 24 ga, StableFlex, for use with autosampler
Supelco
SPME fiber assembly Divinylbenzene/Carboxen/Polydimethylsiloxane (DVB/CAR/PDMS), needle size 24 ga, for use with manual holder
Supelco
SPME fiber assembly Carboxen/Polydimethylsiloxane (CAR/PDMS), df 85 μm(CAR/PDMS, needle size 24 ga, StableFlex, for use with autosampler
Supelco
SPME fiber assembly Carboxen/Polydimethylsiloxane (CAR/PDMS), df 75 μm(CAR/PDMS, needle size 23 ga, for use with autosampler
Supelco
SPME fiber assembly Carboxen/Polydimethylsiloxane (CAR/PDMS), df 75 μm(CAR/PDMS, for use with manual holder, needle size 24 ga
Supelco
SPME fiber assembly Carboxen/Polydimethylsiloxane (CAR/PDMS), df 85 μm(CAR/PDMS, needle size 24 ga, for use with manual holder, StableFlex fiber
Supelco
SPME fiber assembly Carboxen/Polydimethylsiloxane (CAR/PDMS), df 75 μm(CAR/PDMS, needle size 24 ga, for use with autosampler
Supelco
SPME fiber assembly Divinylbenzene/Carboxen/Polydimethylsiloxane (DVB/CAR/PDMS), needle size 24 ga, StableFlex
Supelco
Carboxen® Adsorbent, matrix Carboxen® 1000, 60-80 mesh, bottle of 10 g
Supelco
Carboxen® Adsorbent, matrix Carboxen® 563, 20-45 mesh, bottle of 10 g
Supelco
Carboxen® Adsorbent, matrix Carboxen® 1003, 40-60 mesh, bottle of 10 g
Supelco
Carboxen® Adsorbent, matrix Carboxen® 564, 20-45 mesh, bottle of 10 g
Supelco
Carboxen® Adsorbent, matrix Carboxen® 569, 20-45 mesh, bottle of 10 g
Supelco
Carboxen®-1010 PLOT Capillary GC Column, L × I.D. 30 m × 0.32 mm, average thickness 15 μm
Supelco
Carboxen®-1006 PLOT Capillary GC Column, L × I.D. 30 m × 0.53 mm, average thickness 30 μm
Supelco
Carboxen®-1010 PLOT Capillary GC Column, L × I.D. 30 m × 0.53 mm, average thickness 30 μm
Supelco
Carboxen®-1006 PLOT Capillary GC Column, L × I.D. 30 m × 0.32 mm, average thickness 15 μm
Supelco
Carboxen® 572 for Tobacco Smoke, Adsorbent Bed Wt: 300 mg, cartridge size 3 mL, pkg of 50 ea
Supelco
ORBO-93 Sorbent Tube, ORBO tube I.D. × L 6 mm × 95 mm, Bed A 180 mg, Bed B 90 mg, 60/80 mesh, pkg of 25 ea
Supelco
Tenax® TA / Carboxen® 1018, glass TD tube, preconditioned, O.D. × L 1/4 in. × 3 1/2 in., Sealed with (Swagelok® End-Fittings), pkg of 10 ea
Supelco
ORBO 78 HBr on Carboxen® 564 specially cleaned (20/45), 400/200 mg, W,W,W separators, O.D. × L 6 mm × 110 mm, pkg of 25 ea
Supelco
ORBO 90 Carboxen® 564 (20/45), 160/80 mg, W,F,F separators, O.D. × L 6 mm × 75 mm, pkg of 25 ea, for analyte group MEK (methylethyl ketone)