Skip to Content
Merck
  • Multimodal MR imaging of brain iron in attention deficit hyperactivity disorder: a noninvasive biomarker that responds to psychostimulant treatment?

Multimodal MR imaging of brain iron in attention deficit hyperactivity disorder: a noninvasive biomarker that responds to psychostimulant treatment?

Radiology (2014-06-18)
Vitria Adisetiyo, Jens H Jensen, Ali Tabesh, Rachael L Deardorff, Els Fieremans, Adriana Di Martino, Kevin M Gray, Francisco X Castellanos, Joseph A Helpern
ABSTRACT

To comprehensively assess brain iron levels in typically developing control subjects and patients with attention deficit hyperactivity disorder (ADHD) when psychostimulant medication history is accounted for. This prospective study was approved by the institutional review board, and informed consent was obtained. Brain iron was indexed noninvasively by using magnetic resonance (MR) imaging relaxation rates (R2, R2*, R2') and magnetic field correlation (MFC) in the globus pallidus, putamen, caudate nucleus, and thalamus for 22 patients with ADHD (12 medication-naïve patients and 10 with a history of psychostimulant treatment) and 27 control subjects (age range, 8-18 years). Serum iron measures were also collected. Subgroup differences were analyzed with data-appropriate omnibus tests followed by post hoc pairwise comparisons; false discovery rate correction was conducted to control for multiple comparisons. Medication-naïve ADHD patients had significantly lower striatal and thalamic MFC indexes of brain iron than did control subjects (putamen, P = .012; caudate nucleus, P = .008; thalamus, P = .012) and psychostimulant-medicated ADHD patients (putamen, P = .006; caudate nucleus, P = .010; thalamus, P = .021). Conversely, the MFC indexes in medicated patients were comparable to those in control subjects. No significant differences were detected with R2, R2*, R2', or serum measures. Lower MFC indexes of striatal and thalamic brain iron in medication-naïve ADHD patients and lack of differences in psychostimulant-medicated patients suggest that MFC indexes of brain iron may represent a noninvasive diagnostic biomarker that responds to psychostimulant treatment.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Iron, powder, −325 mesh, 97%
Iron, IRMM®, certified reference material, 0.5 mm wire
Sigma-Aldrich
Iron, chips, 99.98% trace metals basis
Sigma-Aldrich
Iron, foil, thickness 0.1 mm, ≥99.9% trace metals basis
Sigma-Aldrich
Iron, puriss. p.a., carbonyl-Iron powder, low in magnesium and manganese compounds, ≥99.5% (RT)
Sigma-Aldrich
Iron, nanopowder, 35-45 nm particle size, 99.5% trace metals basis
Sigma-Aldrich
Iron, foil, thickness 0.25 mm, ≥99.99% trace metals basis
Sigma-Aldrich
Iron, wire, diam. 1.0 mm, ≥99.9% trace metals basis
Sigma-Aldrich
Iron, granular, 10-40 mesh, >99.99% trace metals basis
Sigma-Aldrich
Carbonyl iron, ≥97% Fe basis
Sigma-Aldrich
Iron, ≥99%, reduced, powder (fine)
Sigma-Aldrich
Iron, powder, <10 μm, ≥99.9% trace metals basis