Skip to Content
Merck
  • KDM3A regulates alternative splicing of cell-cycle genes following DNA damage.

KDM3A regulates alternative splicing of cell-cycle genes following DNA damage.

RNA (New York, N.Y.) (2021-07-30)
Mai Baker, Mayra Petasny, Nadeen Taqatqa, Mercedes Bentata, Gillian Kay, Eden Engal, Yuval Nevo, Ahmad Siam, Sara Dahan, Maayan Salton
ABSTRACT

Changes in the cellular environment result in chromatin structure alteration, which in turn regulates gene expression. To learn about the effect of the cellular environment on the transcriptome, we studied the H3K9 demethylase KDM3A. Using RNA-seq, we found that KDM3A regulates the transcription and alternative splicing of genes associated with cell cycle and DNA damage. We showed that KDM3A undergoes phosphorylation by PKA at serine 265 following DNA damage, and that the phosphorylation is important for proper cell-cycle regulation. We demonstrated that SAT1 alternative splicing, regulated by KDM3A, plays a role in cell-cycle regulation. Furthermore we found that KDM3A's demethylase activity is not needed for SAT1 alternative splicing regulation. In addition, we identified KDM3A's protein partner ARID1A, the SWI/SNF subunit, and SRSF3 as regulators of SAT1 alternative splicing and showed that KDM3A is essential for SRSF3 binding to SAT1 pre-mRNA. These results suggest that KDM3A serves as a sensor of the environment and an adaptor for splicing factor binding. Our work reveals chromatin sensing of the environment in the regulation of alternative splicing.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Protein Kinase A Inhibitor Fragment 6-22 amide, ≥97% (HPLC)