- Reversion-inducing cysteine-rich protein with Kazal motifs and MT1-MMP promote the formation of robust fibrillin fibers.
Reversion-inducing cysteine-rich protein with Kazal motifs and MT1-MMP promote the formation of robust fibrillin fibers.
Fibrillins (FBNs) form mesh-like structures of microfibrils in various elastic tissues. RECK and FBN1 are co-expressed in many human tissues, suggesting a functional relationship. We found that dermal FBN1 fibers show atypical morphology in mice with reduced RECK expression (RECK-Hypo mice). Dermal FBN1 fibers in mice-lacking membrane-type 1-matrix metalloproteinase (MT1-MMP) show a similar atypical morphology, despite the current notion that MT1-MMP (a membrane-bound protease) and RECK (a membrane-bound protease inhibitor) have opposing functions. Our experiments using dermal fibroblasts indicated that RECK promotes pro-MT1-MMP activation, increases cell-associated gelatinase/collagenase activity, and decreases diffusible gelatinase/collagenase activity, while MT1-MMP stabilizes RECK in these cells. Experiments using purified proteins indicate that RECK and its binding partner ADAMTS10 keep the proteolytic activity of MT1-MMP within a certain range. These findings suggest that RECK, ADAMTS10, and MT1-MMP cooperate to support the formation of robust FBN1 fibers.