Skip to Content
Merck
  • Presence of N-acetylneuraminic acid in the lung during postnatal development.

Presence of N-acetylneuraminic acid in the lung during postnatal development.

European journal of histochemistry : EJH (2020-05-08)
Maria de Fátima Martins, Marco S Freitas, Ana Honório-Ferreira, Carlos Alberto Gonçalves
ABSTRACT

Sialic acids, particularly N-acetylneuraminic acid (Neu5Ac), are present as terminal components of rich and complex oligosaccharide chains, which are termed glycans, and are exhibited on the cell surfaces, especially on epithelial cells. Crucial in the 'social behavior' of the cell, sialic acids play vital roles in many physiological and pathological phenomena. The aim of the present study was to separate, identify, and quantify Neu5Ac in purified lung membranes from 4-, 14-, and 21-day-old animals, followed by the statistical analysis of these results with our previously reported data (0-day-old and adult results). Complementary, ultrastructural methodologies were used. The differences in the Neu5Ac values obtained across the examined postnatal-lung development relevant ages studied were found to be statistically significant. A substantial increase in the mean level of this compound was found during the period of 'bulk' alveolarization, which takes place from postnatal day 4 to 14 (P4-P14). The comparison of the mean levels of Neu5Ac, during microvascular maturation (mainly between P12 and P21), reveals that the difference, although statistically significant, is the least significant difference among all the pair-wise differences between the developmental stages. The presence of sub-terminal N-acetylgalactosamine (GalNAc)/Galactose (Gal) residues with terminal sialic acids on the bronchioloalveolar cell surfaces was confirmed using lung ultra-thin sections of adult and 0-day-old animals. These results showed that, although Neu5Ac levels increase throughout postnatal lung development, this sialic acid was substantially added to epithelial cell surfaces during the "bulk" alveolarization period, while its presence was less important during the microvascular maturation period. Bearing in mind that sialic acids are negatively charged and create charge repulsions between adjacent cells, we hypothesized that they can substantially contribute to postnatal alveolar formation and maturation.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Deoxyribonuclease I from bovine pancreas, Type II, lyophilized powder, Protein ≥80 %, ≥2,000 units/mg protein
SKU
Pack Size
Availability
Price
Quantity