Skip to Content
Merck
  • Synthesized of glucose-responsive nanogels labeled with fluorescence molecule based on phenylboronic acid by RAFT polymerization.

Synthesized of glucose-responsive nanogels labeled with fluorescence molecule based on phenylboronic acid by RAFT polymerization.

Journal of biomaterials science. Polymer edition (2019-05-03)
Qianqian Guo, Xinge Zhang
ABSTRACT

We reported on the fabrication of sugar-responsive nanogels covalently incorporated with 3-acrylamidophenylboronic acid (AAPBA) as glucose-recognizing moiety, 2-(acrylamido)glucopyranose (AGA) as biocompatible moiety, and boron dipyrromethene (BODIPYMA) as fluorescence donor molecule. The p(AAPBA-AGA-BODIPYMA) nanogels were synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization in the mixture solvents of H2O/ethanol. Nanogels could respond to glucose and size of nanogels increased after treating with 3 mg/mL glucose medium. The fluorescent intensity of nanogels varied dependent on different glucose concentrations. Besides, insulin, a model drug, can be encapsulated into nanogels with the loading amount up to 8.2%. The drug release was dependent on the content of AAPBA moieties in nanogels and glucose concentrations in release medium. The investigation on the cytotoxicity of nanogels revealed that nanogels had good compatibility. Such glucose-responsive nanogels have potential in detection and treatment of diabetes.