Skip to Content
Merck
  • Mixomics analysis of breast cancer: Long non-coding RNA linc01561 acts as ceRNA involved in the progression of breast cancer.

Mixomics analysis of breast cancer: Long non-coding RNA linc01561 acts as ceRNA involved in the progression of breast cancer.

The international journal of biochemistry & cell biology (2018-06-12)
Rui Jiang, Chunming Zhao, Binbin Gao, Jiawen Xu, Wei Song, Peng Shi
ABSTRACT

This study aimed at finding the long non-coding RNA (lncRNA), miRNA and mRNA which played critical roles in breast cancer (BrCa) by using mixOmics R package. The BrCa dataset were obtained from TCGA and then analyzed using "DESeq2" R package. Multivariate analyses were performed with the "mixOmics" R package and the first component of the stacked partial least-Squares discriminant analysis results were used for searching the interested lncRNA, miRNA and mRNA. qRT-PCR was applied to identify the bioinformatics results in four BrCa cell lines (MCF7, BT-20, ZR-75-1, and MX-1) and the breast epithelial cell line MCF-10 A. Then cells (MCF-1 and MX-1) were transfected with si-linc01561, miR-145-5p mimics and si-MMP11 to further investigate the effects of linc01561, miR-145-5p and MMP11 on the BrCa cells proliferation and apoptosis. MixOmics results showed that linc01561, miR-145-5p and MMP11 might play important roles in BrCa. qRT-PCR results identified that in BrCa cell lines, linc01561 and MMP11 were higher expressed while miR-145-5p was lower expressed compared with those in epithelial cell line. The linc01561 inhibition elevated miR-145-5p expression and then suppressed MMP11 expression. Moreover, linc01561 inhibition suppressed the BrCa cells proliferation and promoted the apoptosis, which was realized by up-regulating expression of miR-145-5p and down-regulating expression of MMP11. In summary, the findings of this study, based on ceRNA theory, combining the research foundation of miR-145-5p and MMP11, and taking linc01561 as a new study point, provide new insight into molecular-level reversing proliferation and apoptosis of BrCa.