Skip to Content
Merck
All Photos(2)

Documents

GF40266682

Sigma-Aldrich

Lithium

foil, not light tested, 38x500mm, thickness 0.20mm, as rolled, 99.9%

Synonym(s):

Lithium, LI000220

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
Li
CAS Number:
Molecular Weight:
6.94
MDL number:
UNSPSC Code:
12141803
PubChem Substance ID:
NACRES:
NA.23

Assay

99.9%

form

foil

manufacturer/tradename

Goodfellow 402-666-82

resistivity

9.446 μΩ-cm, 20°C

size × thickness

38x500 mm × 0.20 mm

bp

1342 °C (lit.)

mp

180 °C (lit.)

density

0.534 g/mL at 25 °C (lit.)

SMILES string

[Li]

InChI

1S/Li

InChI key

WHXSMMKQMYFTQS-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

For updated SDS information please visit www.goodfellow.com.

Application

  • A retrospective on lithium-ion batteries: This article reviews the contributions in the development of lithium-ion batteries, discussing inspirational insights to guide future breakthroughs in battery technology (J Xie, YC Lu, 2020).
  • Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries: This review discusses the limitations of commercial lithium-ion batteries and explores the directions for next-generation batteries (F Wu, J Maier, Y Yu, 2020).
  • Prospects for lithium-ion batteries and beyond—a 2030 vision: This article explores the future of lithium-ion batteries and discusses current strategies to improve these and next-generation battery technologies (CP Grey, DS Hall, 2020).
  • Lithium brines: A global perspective: This study offers a global perspective on lithium brines, discussing the critical and technologically important roles of lithium, which is in increasing demand (LA Munk, SA Hynek, DC Bradley, D Boutt, K Labay, 2016).

Legal Information

Product of Goodfellow

Storage Class Code

4.3 - Hazardous materials which set free flammable gases upon contact with water

WGK

WGK 1

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Customers Also Viewed

Slide 1 of 1

1 of 1

Jiehua Liu et al.
Advanced materials (Deerfield Beach, Fla.), 24(30), 4097-4111 (2012-04-17)
Two dimensional nanoarchitectures are of great interest in lithium storage for energy-storage devices, in particular lithium-ion batteries, due to its shortened paths for fast lithium ion diffusion and large exposed surface offering more lithium-insertion channels. Their competitive lithium-storage features provide
Zhi Yang Tam et al.
The journals of gerontology. Series A, Biological sciences and medical sciences, 69(7), 810-820 (2014-01-09)
Aging has been associated with the accumulation of damages in molecules and organelles in cells, particularly mitochondria. The rate of damage accumulation is closely tied to the turnover of the affected cellular components. Perturbing mitochondrial turnover has been shown to
Jian Liu et al.
Chemical communications (Cambridge, England), 47(47), 12578-12591 (2011-08-25)
Yolk/shell or 'rattle-typed' nanomaterials with nanoparticle cores inside hollow shells are interesting among the complex hollow nanostructures. Yolk/shell nanoparticles (YSNs) are promising functional nanomaterials for a variety of applications such as catalysis, delivery, lithium-ion batteries and biosensors due to their
Xiangbo Meng et al.
Advanced materials (Deerfield Beach, Fla.), 24(27), 3589-3615 (2012-06-16)
Lithium-ion batteries (LIBs) are used widely in today's consumer electronics and offer great potential for hybrid electric vehicles (HEVs), plug-in HEVs, pure EVs, and also in smart grids as future energy-storage devices. However, many challenges must be addressed before these
P Sienaert et al.
Journal of affective disorders, 146(1), 15-33 (2012-09-05)
Throughout the past decades, several methods have been developed to achieve therapeutic lithium blood levels as quick and safe as possible. The present study will systematically review the methods developed and studied for lithium dose estimation or level prediction at

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service