The Biochemical journal, 328 ( Pt 3), 855-861 (1998-02-07)
The organ common-type (CT) isoenzyme of acylphosphatase is inactivated by Woodward's reagent K (WRK) (N-ethyl-5-phenylisoxazolium-3'-sulphonate) at pH6.0. The inactivation reaction follows apparent pseudo first-order kinetics. The dependence of the reciprocal of the pseudo first-order kinetic constant (kobs) on the reciprocal
Journal of protein chemistry, 15(5), 467-472 (1996-07-01)
The reaction of Woordward's reagent K (WRK) with model amino acids and proteins has been analyzed. Our results indicate that WRK forms 340-nm-absorbing adducts with sulfhydryl- and imidazol-containing compounds, but not with carboxylic acid derivatives, in agreement with Liamas et
In this work we show that ryanodine binding to junctional sarcoplasmic reticulum (SR) membranes or purified ryanodine receptor (RyR) is inhibited in a time- and concentration-dependent fashion by prior treatment with the carboxyl reagent dicyclohexylcarbodiimide (DCCD). Exposure of the membrane-bound
The transport inhibiting nucleotide binding to the uncoupling protein (UCP) has a unique pH dependence and has been postulated to be controlled by the dissociation state of a carboxyl group in UCP with pK 4.5 and, in addition only for
Human liver arginase (EC 3.5.3.1) was totally inactivated by incubation with Woodward's reagent K (WRK). The inactivation followed pseudo-first-order kinetics, and the order of the inactivation was close to 1, consistent with reaction of one molecule of WRK with one
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.