754064
DH-FTTF
sublimed, 95%
Synonym(s):
5,5′-Bis(7-hexyl-9H-fluoren-2-yl)-2,2′-bithiophene
About This Item
Assay
95%
form
sublimed
loss
0.5 wt. %, 405 °C
mp
373-378 °C
semiconductor properties
P-type (mobility=0.05-0.12 cm2/V·s)
InChI
1S/C46H46S2/c1-3-5-7-9-11-31-13-17-39-35(25-31)29-37-27-33(15-19-41(37)39)43-21-23-45(47-43)46-24-22-44(48-46)34-16-20-42-38(28-34)30-36-26-32(14-18-40(36)42)12-10-8-6-4-2/h13-28H,3-12,29-30H2,1-2H3
InChI key
IEOMVXSYYUOEQW-UHFFFAOYSA-N
Looking for similar products? Visit Product Comparison Guide
Application
Storage Class Code
11 - Combustible Solids
WGK
WGK 3
Flash Point(F)
Not applicable
Flash Point(C)
Not applicable
Choose from one of the most recent versions:
Certificates of Analysis (COA)
Don't see the Right Version?
If you require a particular version, you can look up a specific certificate by the Lot or Batch number.
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Articles
Since their discovery, organic light emitting devices (OLEDs) have evolved from a scientific curiosity into a technology with applications in flat panel displays and the potential to revolutionize the lighting market. During their relatively short history, the technology has rapidly advanced, and device efficiencies have increased more than 20-fold, approaching the theoretical limit for internal quantum efficiencies.
Intrinsically stretchable active layers for organic field-effect transistors (OFET) are discussed. Polymer structural modification & post-polymerization modifications are 2 methods to achieve this.
Solution-processed organic photovoltaic devices (OPVs) have emerged as a promising clean energy generating technology due to their ease of fabrication, potential to enable low-cost manufacturing via printing or coating techniques, and ability to be incorporated onto light weight, flexible substrates.
Solution-processed organic photovoltaic devices (OPVs) have emerged as a promising clean energy generating technology due to their ease of fabrication, potential to enable low-cost manufacturing via printing or coating techniques, and ability to be incorporated onto light weight, flexible substrates.
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service