Skip to Content
Merck
All Photos(3)

Documents

283215

Sigma-Aldrich

Poly(allylamine hydrochloride)

average Mw ~17,500 (GPC vs. PEG std.)

Synonym(s):

PAA HCl, PAH

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
[CH2CH(CH2NH2 · HCl)]n
CAS Number:
EC Number:
MDL number:
UNSPSC Code:
12162002
PubChem Substance ID:
NACRES:
NA.23

form

solid

mol wt

average Mw ~17,500 (GPC vs. PEG std.)

SMILES string

Cl.NCC=C

InChI

1S/C3H7N/c1-2-3-4/h2H,1,3-4H2

InChI key

VVJKKWFAADXIJK-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

Poly(allylamine hydrochloride) (PAH) is a water-soluble weak-base and a biodegradable polymer.

Application

Poly(allylamine hydrochloride) can be used as a starting material to prepare:
  • Chitosan/PAH polymer blend films by solution casting technique. These films can be employed in injectable drug delivery systems and tissue generation.
  • Cross-linked amino-modified graphene oxide for the removal of Cr(IV) from aqueous solutions.
  • Polyelectrolyte multilayers(PEMs) by the layer-by-layer method. These PEMs can be used to prepare controlled drug delivery systems and coatings with controlled cell adhesion properties.
Used to make redox hydrogel-modified electrodes for measuring enzyme responses.

Features and Benefits

  • Excellent environmental stability
  • Water-soluble
  • Low cost

Pictograms

Exclamation mark

Signal Word

Warning

Hazard Statements

Hazard Classifications

Acute Tox. 4 Oral - Skin Sens. 1

Storage Class Code

11 - Combustible Solids

WGK

WGK 1

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

B Marzec et al.
Journal of structural biology, 208(2), 127-136 (2019-08-23)
Coccolithophores are marine phytoplankton that are among the most prolific calcifiers widespread in Earth's oceans, playing a crucial role in the carbon cycle and in the transport of organic matter to the deep sea. These organisms produce highly complex mineralized
L Minati et al.
International journal of pharmaceutics, 438(1-2), 45-52 (2012-09-11)
Gold nanoparticles functionalized with doxorubicin and stabilized with multilayers of degradable polyelectrolyte were allowed to age in aqueous medium in vitro in order to show the possibility of drug release in cellular environment. The chemico-physical characteristics of the nanoparticles are
Yiyao Liu et al.
Expert opinion on drug delivery, 9(10), 1197-1207 (2012-09-27)
Technologies to increase tissue vascularity are critically important to the fields of tissue engineering and cardiovascular medicine. Angiogenic factors, like VEGF, have been widely investigated to induce vascular endothelial cell proliferation and angiogenesis for establishing a vascular network. However, effective
Milana Lisunova et al.
Langmuir : the ACS journal of surfaces and colloids, 28(37), 13345-13353 (2012-08-29)
The patterned template-assisted assembly of the cubic microparticles driven by the competing capillary, Columbic, and van der Waals forces had been studied in comparison with the traditional spherical colloidal microparticles. We observed that the spherical and cubic microparticles assembled with
Marie Krogsgaard et al.
Biomacromolecules, 14(2), 297-301 (2013-01-26)
Self-healing hydrogels can be made using either reversible covalent cross-links or coordination chemistry bonds. Here we present a multi-pH-responsive system inspired by the chemistry of blue mussel adhesive proteins. By attaching DOPA to an amine-functionalized polymer, a multiresponsive system is

Articles

Recently, layer-by-layer (LbL) assembly has emerged as a versatile, gentle and, simple method for immobilization of functional molecules in an easily controllable thin film morphology.1,2 In this short review, we introduce recent advances in functional systems fabricated by using the mild, yet adaptable LbL technique.

We present an article that discusses two applications in particular; first, using these layers as polyelectrolyte membranes to control permeability.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service