The photodegradation of benzo[e]pyrene (BeP), a ubiquitous polycyclic aromatic hydrocarbon (PAH) contaminant, was investigated in solution and adsorbed on surfaces modeling the atmospheric particulate matter to provide fundamental information that could help to clarify its fate in the atmosphere. Diones
A DFT study aimed at understanding structure-reactivity relationships and fluorine substitution effects on carbocation stability in benzo[a]pyrene (BaP), benzo[e]pyrene (BeP), and aza-benzo[a]pyrene (aza-BaP) derivatives are reported. The relative energies of the resulting carbocations are examined and compared, taking into account
FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 19(10), 1290-1292 (2005-06-09)
Although it has been demonstrated that carcinogenic environmental polycyclic aromatic hydrocarbons (PAHs) cause progression of atherosclerosis, the underlying mechanism remains unclear. In the present study, we aimed to investigate whether DNA binding events are critically involved in the progression of
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.