1-Deoxy-D-xylulose-5-phosphate is used as a substrate for the identification, differentiation and characterization of procaryotic 1-Deoxy-D-xylulose-5-phosphate reductoisomerase(s) (Dxr) which catalyze the first committed step of the nonmevalonate pathway (NMP) for isoprenoid biosynthesis.
Biochem/physiol Actions
Metabolite of the non-mevalonate pathway, generally found in prokaryotes, as precursor to isoprenoids as well asnon-isoprenoids like vitamins. As this pathway is not present in humans, it is of interest for the development of bacterium-specific drugs in the search for treatments of infectious diseases.
Packaging
Bottomless glass bottle. Contents are inside inserted fused cone.
Other Notes
To gain a comprehensive understanding of our extensive range of Monosaccharides for your research, we encourage you to visit our Carbohydrates Category page.
Proceedings of the National Academy of Sciences of the United States of America, 97(24), 13172-13177 (2000-11-15)
Isopentenyl diphosphate (IPP) is the central intermediate in the biosynthesis of isoprenoids, the most ancient and diverse class of natural products. Two distinct routes of IPP biosynthesis occur in nature: the mevalonate pathway and the recently discovered deoxyxylulose 5-phosphate (DXP)
Science (New York, N.Y.), 285(5433), 1573-1576 (1999-09-08)
A mevalonate-independent pathway of isoprenoid biosynthesis present in Plasmodium falciparum was shown to represent an effective target for chemotherapy of malaria. This pathway includes 1-deoxy-D-xylulose 5-phosphate (DOXP) as a key metabolite. The presence of two genes encoding the enzymes DOXP
The role of the nonreacting phosphodianion group of 1-deoxy-d-xylulose-5-phosphate (DXP) in catalysis by DXP reductoisomerase (DXR) was investigated for the reaction of the "substrate in pieces". The truncated substrate 1-deoxy-l-erythrulose is converted by DXR to 2-C-methylglycerol with a kcat/Km that
Lateral gene transfer (LGT) is a major force in microbial genome evolution. Here, we present an overview of lateral transfers affecting genes involved in isopentenyl diphosphate (IPP) synthesis. Two alternative metabolic pathways can synthesize this universal precursor of isoprenoids, the
Proceedings of the National Academy of Sciences of the United States of America, 95(5), 2100-2104 (1998-04-16)
Isopentenyl diphosphate, the common precursor of all isoprenoids, has been widely assumed to be synthesized by the acetate/mevalonate pathway in all organisms. However, based on in vivo feeding experiments, isopentenyl diphosphate formation in several eubacteria, a green alga, and plant
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.