Skip to Content
Merck
All Photos(3)

Documents

806102

Sigma-Aldrich

t-Butylammonium iodide

greener alternative

Synonym(s):

tert-Butylamine hydriodide, Greatcell Solar®

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C4H12IN
CAS Number:
Molecular Weight:
201.05
UNSPSC Code:
12352101
NACRES:
NA.23

Assay

98%

form

powder

greener alternative product characteristics

Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.

sustainability

Greener Alternative Product

mp

270.5 °C

greener alternative category

General description

t-Butylammonium iodide is an ammonium salt the facilitates the formation of highly stable perovskites with good performances. It can be used as an A-site cation that can be combined with methylammonium lead iodide to produce dimethylammonium, iso-propylammonium, and t-butylammonium lead iodide perovskites.
We are committed to bringing you Greener Alternative Products, which adhere to one or more of The 12 Principles of Greener Chemistry. This product has been enhanced for energy efficiency. Click here for more details.

Application

The iodide and bromide based alkylated halides find applications as precursors for fabrication of perovskites for photovoltaic applications.

Legal Information

Product of Greatcell Solar®
Greatcell Solar is a registered trademark of Greatcell Solar

Pictograms

Exclamation mark

Signal Word

Warning

Hazard Statements

Hazard Classifications

Acute Tox. 4 Oral - Eye Irrit. 2 - Skin Irrit. 2 - STOT SE 3

Target Organs

Respiratory system

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Customers Also Viewed

The effect of structural dimensionality on carrier mobility in lead-halide perovskites
Hartono NTP, et al.
Journal of Material Chemistry A, 7(41), 23949-23957 (2019)
A layered hybrid perovskite solar-cell absorber with enhanced moisture stability
Smith IC, et al.
Angewandte Chemie (International ed. in English), 53(42), 11232-11235 (2014)
Lutz Hampe et al.
British journal of pharmacology, 174(23), 4478-4492 (2017-09-26)
Adiponectin, an adipokine possessing profound insulin-sensitizing and anti-inflammatory properties, is a potent biotherapeutic agent . The trimeric adiponectin subunit assembles into hexameric and functionally important higher molecular weight (HMW) forms, controlled by the endoplasmic reticulum protein 44 (ERp44). Obesity-induced ER
Zhi-Kuang Tan et al.
Nature nanotechnology, 9(9), 687-692 (2014-08-05)
Solid-state light-emitting devices based on direct-bandgap semiconductors have, over the past two decades, been utilized as energy-efficient sources of lighting. However, fabrication of these devices typically relies on expensive high-temperature and high-vacuum processes, rendering them uneconomical for use in large-area
Nam Joong Jeon et al.
Nature, 517(7535), 476-480 (2015-01-07)
Of the many materials and methodologies aimed at producing low-cost, efficient photovoltaic cells, inorganic-organic lead halide perovskite materials appear particularly promising for next-generation solar devices owing to their high power conversion efficiency. The highest efficiencies reported for perovskite solar cells

Articles

Next generation solar cells have the potential to achieve conversion efficiencies beyond the Shockley-Queisser (S-Q) limit while also significantly lowering production costs.

Dr. Perini and Professor Correa-Baena discuss the latest research and effort to obtain higher performance and stability of perovskite materials.

Dr. Perini and Professor Correa-Baena discuss the latest research and effort to obtain higher performance and stability of perovskite materials.

Dr. Perini and Professor Correa-Baena discuss the latest research and effort to obtain higher performance and stability of perovskite materials.

See All

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service